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1 Introduction

Microcalcification detection is the hallmark of mammography as a breast cancer screening
modality. For technical reasons, ultrasonic detection of all mammographically-visible micro-
calcifications has been problematic. In clinical ultrasound, high frequencies must be used
to resolve microcalcifications below 200 micrometers. Unfortunately, ultrasonics above 10
MHz suffer from appreciable attenuation in soft tissues, and depth of penetration is limited.
Transmission diffraction tomography, while well-suited for the geometry of the breast, is
inherently insensitive to scattering caused by small, hard inhomogeneities. A more general
form of acoustic inverse scattering is therefore needed for microcalcification detection and
localization by ultrasound. We reasoned that the advanced scalar inverse scattering theory
developed by Colton, Kirsch, and others in the RADAR community could potentially deter-
mine the shape of biological scatterers with size on the order of the wavelength. In addition
to size and number, the morphology of breast microcalcifications is an important diagnos-
tic indicator. Our hypothesis was that the linear sampling method (LS), when augmented
with a method for estimating the inhomogeneous Green’s function for wave propagation in
the breast, can translate to an acoustic imaging system to detect, localize, and characterize
microcalcifications in breast phantoms using data from the scattering measurements in a
tomographic geometry.

2 Body

The goal of this research endeavor was to develop a bistatic ultrasound imaging method that
specifically targeted breast microcalcifications. By bistatic imaging, we mean that receiver
and transmitter can be separated in space. Since there were several commercial breast
acoustic tomography systems undergoing FDA trials, we believed that it was an appropriate
time to apply state-of-the-art methods from optimum array processing and inverse scattering
to this important biomedical imaging problem.

In Tasks 8 and 9 of Year 1, we upgraded our water tank testing station to facilitate
quicker data acquisition from custom ultrasound arrays with improved signal-to-noise ratio.
Using provided funds, wereplaced an obsolete, 40 MHz, 8 bit, 48 channel DAQ system with
a compact, portable, 64 channel, 12-bit, 65 MHz, commercial DAQ system. This piece of
major equipment is based on a National Instruments (Austin, Texas) Compact PCI chassis
containing 8 PXI-5105 8 channel digitizer boards. Through the development of custom
software in the LabVIEW programming environment, we can capture data simultaneously
from 64 array elements. At the time of purchase, this DAQ system was a novel design that
has attracted the attention of the manufacturer, and subsequently we were involved as beta
testers on a new product line that is focused on ultrasound/NDT DAQ at a much lower cost.

The goal of this program was to evaluate Colton-Kirsch linear sampling (CK-LS) method
in breast ultrasound tomography. The CK-LS method is based on the mathematical analysis
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of a model of scattering called the far-field operator:

(Fg)(x) =
∫
Ω

u∞(x, d)g(d)ds

Here, F is the far-field complex amplitude for a sensor in direction x. The scatterer g

lies in the domain Ω, and a plane wave is used to insonify the object from direction d.
An important result of analysis by David Colton is: Assume that ∂D is analytic and let

z ∈ D. Then for every ǫ > 0 there exists a solution g = g(·, z) ∈ L2(Ω) of the inequality

‖Fg − Φ∞(·, z)‖L2(Ω) < ǫ such that

lim
z→∂D

‖g(·, z)‖L2(Ω) = ∞

In layman’s term, this means that the solution to this equation for the far-field data will
blow-up if the test point z is on the boundary of a scatterer. This suggests our computational
strategy for imaging the surface of object.

In our software development, Gaussian quadrature and linearization were used to reduce
the problem to a matrix equation.

(Fg)(x) = Φ∞(x, z)

Here, Φ∞(x, z) is the Green’s function for a point scatterer at position z in the field-of-view.
Even after linearization, this inverse problem is ill-posed, so some sort of regularization is
required. In Task 1, we developed software routines in Matlab that allow either Tikhonov reg-
ularization or singular value decomposition truncation, which is well-recognized as a simple
form of regularization. For most numerical experiments with noiseless data, the regulariza-
tion may be turned off.

One technical aspect of this research study dealt with a model-data mismatch. In general,
all biomedical ultrasound data is acquired in the time-domain; that is, each channel or
element of a receiver array records a signal in time. On the other hand, the family of
inverse scattering algorithms of interest here are all frequency-domain algorithm; that is, they
assume a single frequency wave that is actived for all time. While frequency-domain data
acquisition is familiar to researchers working on near infra-red diffuse optical tomography of
the breast, it is often not feasible to use frequency-domain data acquisition in ultrasound
tomography due to the numerous spurious reflections from the imaging geometry and, in
particular, the boundaries of the imaging domain. So, in all physical experiments, the first
step in the data processing chain is to transform the time-domain data to the frequency-
domain by employing the fast Fourier transform (FFT). Since the typical ultrasound signal
possesses 100% fractional bandwidth, one is then left with the choice of how much bandwidth
in the frequency space to utilize in the inverse scattering algorithm. For perfect synthetic
or low noise real data, it may be sufficient to use only the complex amplitudes at the center
frequencies. For noisy data, it may be useful to include all data up to the full-width-at-
half-max. However, a balance must be struck between maximizing the data fidelity and
minimizing the computational cost of a larger problem. As with all ultrasound tomography,
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the frequency-domain data must be phase unwrapped, and standard libraries available in
Matlab are applied.

We proposed in Task 2 to develop computation algorithms to generate synthetic data.
For numerical simulations, we developed a variety of software tools for data that could be
imported into Matlab for algorithm assessment. For 2D scattering in the frequency domain,
the Matlab PDE Toolbox provided adequate support for generating test data using finite
element analysis (FEA). For 3D scattering in the frequency domain, we utilized COMSOL
Multiphysics, a commercial FEA platform that supports the importation of arbitrary scat-
tering geometries. In practice, most of the research in this study involved phantoms that
utilized cylindrical symmetry where only 2D imaging is required, so 3D synthetic data gen-
eration was developed but not utilized. Since physical data was in the time domain, we
also investigated finite-difference time-domain (FDTD) software for generating test data. In
the end, we adopted an open source electromagnetics tool called MEEP[1]. As described
in [2], the z-invariant 2D Maxwell equations for either transverse electric or magnetic waves
can be converted to the 2D acoustic wave equation (set of 2 coupled PDEs for pressure p

and particle velocity v) by replacing Hy by p, and replacing Ex and Ez by the 2D velocity
components vz and −vx. In this manner, most electromagnetics packages can be used to
simulate 2D ultrasound time-domain data.

Task 4, the migration of these computation tools to more powerful computer clusters,
was ultimately delayed by the introduction of multicore computers. We find that much of
our code for 2D simulation and imaging reconstruction runs in a reasonable amount of time
on the desktop computers, and much of our Matlab code is parallalizable on GPUs using the
Parallel Computing Toolbox.

A significant portion of our collaborative/synergistic efforts have dealt with Tasks 5 and
6, the development of methods for estimating the soft tissue heterogeneities that must be
accounted for as a background scatterer in the CK-LS method [3]. An emerging model for
time domain scattering in the bistatic ultrasound imaging geometry is the elliptical Radon
transform (ERT). Small transducers can be modelled as having no directional sensitivity,
and in this case the surface of constant time between a transmitter and receiver will be as
follows.

Consider an ellipse with foci at ~xe and ~xr. The family of ellipses at these foci have semi-
major axis a, semi-minor axis b, and a foci separation of 2c = |~xe − ~xr|. The vector form of
the ellipse can be written:

|~x − ~xe| + |~x − ~xr| = 2a

Next, we make use of an identity linking the a and c with the eccentricity e of the ellipse.

a =
c

e

|~x − ~xe| + |~x − ~xr| =
1

e
|~xe − ~xr|

e is defined in the domain 0 ≤ e < 1.
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Figure 1: Geometry for elliptical Radon transform - a model for bistatic ultrasound array
imaging in the breast

One possible definition for the elliptical Radon transform would therefore be:

R 0

~xe,~xr

(e) =
∫
|~x−~xe|+|~x−~xr|=

1

e
|~xe−~xr|

f(~x)ds

There are 5 parameters in this expression. If we additionally require that the semi-major
axis be orthogonal to a line from the origin to the center of the ellipse, then the number
of parameters can be reduced to 4. Based on the principle of dimensionality, the system is
still over-determined. Thus, a shot record for a circular aperture could be modelled as these
integrals over ellipses, and some sort of inversion/image reconstruction should be possible in
at least the least squares sense.

Recently, there appeared in the literature a backprojection-type algorithm for bistatic
imaging according to the the ERT model [4]. Initially, we thought this algorithm might
accelerate our development of the Green’s function estimator in Task 6. However, one of the
co-investigators (G. Ambartsoumian) is an expert in the area of image reconstruction for
photoacoustic tomography (PAT), another imaging method that has shown much promise
for breast cancer imaging. PAT uses a spherical Radon transform, and it was only in 2007
that a filtered backprojection algorithm appeared in the literature for the 2D problem [5].

In operator form, the proposed filtered backprojection algorithm for the elliptical model
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was
f = B ◦ F−1 ◦ Abs ◦ F ◦ RE ◦ f

where F is a Fourier transform pair and Abs is the familiar ramp filter from classical tomog-
raphy. In the case that the transmitter and received are brought together, then this inversion
formula should reproduce the exact reconstruction algorithm found in [5]. Unfortunately,
this is not the case. The filter found in [5] is logarithmic in the radius, and so we deemed
the results in [4] to be incorrect. Please refer to Appendix A for a report summarizing this
analysis.

We dedicated a focused effort on developing a proper method for estimating the soft
tissue background in this ERT model. One of use (M. Lewis) has developed Matlab codes
for forward projection and for estimating a discrete transfer matrix A so that iterative re-
construction methods such as Karmacz can be applied. In addition, a graduate student
supported by this award studied the empirical behavior of the spherical filtered backprojec-
tion algorithm applied naively in the case of ERT, and this work was published in a Masters
thesis[6].

Phantoms for algorithm testing and characterization were based on existing soft tissue
phantoms for low-contrast diffraction tomography. 10 grams of agarose is dissolved in 75
ml heat water and poured into a mold to congeal. Acrylic inserts can be used to create
voids that are filled in a second pass with a different density agarose. Modification of this
phantom includes the addition of hexagonal Allen wrenches and square and round steel
rod to simulate extended scatterers of known shape. Six time-domain multi-static response
matrix data sets were acquired. These data supplement the scattering data from wires (so-
called point scatterers), and include metal scatterers with both circular and hexagonal. The
strong scatterers were embedded in a 7 cm diameter gelatin cylinder with known acoustic
properties. Two variations of phantom were utilized: one with pure gelatin which produces a
piece-wise homogeneous background, and then (in a parallel development to support Task 7)
versions where the gelatin includes Metamucil or other fiber based dietary supplements which
produce speckle that would be associated with the clutter in a random media and models
the speckle observed in real soft tissue. This method was adopted from the literature[7],
and we confirmed the B-mode appearance of this phantom using a VisualSonics Vevo700
small animal ultrasound system. Fluctuations in the data due to these hetergeneities can be
similar in appearance to the signals due to the strong scatterer, and the goal of this study
was to evaluate the performance of linear sampling in this situation.

For Task 13, a peer-reviewed conference proceeding publication[8] was published in early
2009 (see Appendix B). This work was in support of Tasks 6 and 12, and was made pos-
sible by the support of a Biomedical Engineering graduate student through this research
project. In addition, a collaborator supported under the sub-award published a peer-reviewed
book chapter on acoustic tomography in breast imaging. His support under this research
project was critical to the completion of this, and it is noted in the acknowledgements of the
publication[9].

For both synthetic and real data from phantoms, the amplitudes and phases from a
tomographic geometry can be stored in a complex multistatic response matrix, as shown
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Figure 2: Magnitude of multistatic response matrix K for frequency-domain data

in Figure 2. For real data after transformation from time-domain to frequency-domain,
this data will consist of a stack of K for varying spatial frequency k. The linear sampling
algorithm family uses this data set to test points in space for affiliation with a scattering
surface. When the complex data is tested in a raster mode, the points in image associated
with the scattered will be larger than the background. As shown in Figure 3, this prototypical
synthetic data set corresponds to a scattering inclusion that in this case is the complex shape
of the state of Idaho.

In Figure 4, we present an example of an reconstruction of the shape of an extended scat-
terer, in this case a steel Allen wrench embedded in a gelatin phantom of known background
properties. While the reconstruction is true to the shape of the object, one can observe
that the background outside the scatterer is not as well-behaved as in the case with perfect
synthetic data. Since the original time-domain data can have arbitrarily high signal-to-noise
thanks to signal averaging, we hypothesize that these artifacts may be due to subtle numer-
ical inaccuracies that arise during the Fourier transform and phase unwrapping steps. Next
we consider equivalent phantoms where the background media contained fiber (Metamucil
or other supplements). In all cases, the introduction of a random component to the back-
ground media spoiled the linear sampling algorithm’s ability to estimate the shape of the
scatterer. The clutter in the background media effectively increases the complexity of the
problem, as demonstrated in Figure 5. If one examines the correlation matrix K∗K for the
center spatial frequency, one observes that the data is complicated by the clutter, compared
to synthetic data where the magnitude of the correlation matrix is smooth. When processed
with the linear sampling algorithm (including regulatization) this cluttered (not noisy) data
produces an image with no identifiable peaks that correspond to the shape of the object.
While this is disappointing, the data is robust however for one particular algorithm in the
linear sampling family. Using the MUltiple SIgnal Classification (MUSIC) algorithm and a
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Figure 3: Reconstruction of scatterer with shape of state of Idaho using synthetic data

coarse raster scan, it is still feasible to detect the individual scatters even though one can
not estimate their morphology, as demonstrated in the example in Figure 6.

Several difficulties were encountered during the history of this research project. First,
recruitment of graduate students on the UT Southwestern side of the research was more
difficult than anticipated, but this is a reflection of the current organizational structure
rather than an issue with the provided support. In retrospect, a post-doctoral fellow may
have been a wiser choice. In addition, reductions in institutional support made it difficult
to replace mechanical and electrical engineering support, both who departed in 2008-2009.
Lastly, in December 2010, all 8 National Instrument PXI-5105 data acquisition boards failed
in short order due to defective capacitors. Fortunately, this issue was covered by a recall
notice by the manufacturer, and this important equipment was restored to service in April
2011.

3 Supported Personnel

Matthew Lewis, Ph.D., Assistant Professor of Radiology, UT Southwestern
Edmond Richer, Ph.D., Assistant Professor of Radiology, UT Southwestern (now at South-
ern Methodist University)
Peter Antich, Ph.D., formerly Professor of Radiology, UT Southwestern
Ravi Vaidyanathan, M.Phil., Biomedical Engineering Graduate Program, UT Southwestern
Scott Jensen, UT Southwestern (now at Utah State University)
Tuncay Aktosun, Professor of Mathematics, UTA
Gaik Ambartsoumian, Assistant Professor of Mathematics, UTA
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Figure 4: Image reconstruction for steel Allen wrench with hexagonal cross section

Rim Gouia, Ph.D., Department of Mathematics, UTA (now at American University of Shar-
jah, UAE)

4 Key Research Accomplishments

• Identification of fundamental shortcoming in the breast ultrasound tomography liter-
ature as it relates to bistatic imaging

• Development of elliptical Radon transform model for bistatic estimation of background
Green’s function.

• Numerical implementation of 2D elliptical Radon transform model of breast ultrasound
tomography.

• Evaluation of spherical Radon transform filtered backprojection algorithm in the con-
text of elliptical Radon transform model.

• Development of 2D software tools for forward modelling of the low frequency scattering
process and the ill-posed algorithm for reconstructing the shape of scatterers, including
2D finite element for frequency domain representation and 2D FDTD for time domain.

• Successful application of linear sampling method to acoustic inverse scattering for
high impedence targets embedded in homogeneous phantoms, but not in phantoms
containing materials that simulate ultrasound speckle.
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Figure 5: Correlation matrix derived from multistatic response matrix K for many scatterers

• Detailed analysis of circular Radon transform model for time domain ultrasound to-
mography for circular aperture.

5 Reportable Outcomes

• An abstract and poster were presented at the 2008 Era of Hope conference in Balti-
more, Maryland: Acoustic Inverse Scattering for Task-Specific Breast Sonography -
Development of Non-Ionizing Methods for Microcalcification Detection in High-Risk
Populations[10].

• An abstract and poster were presented at the 2008 SIAM Imaging Science meeting
in San Diego: Estimating Tumor Bounds in Bioluminescence Tomography[11]. Here,
methods related to CK-LS were applied to a problem in optical imaging for breast
cancer research.

• A conference proceedings publication on ultrasound tomography using the elliptical
Radon transform model[8].

• A review article on tomographic imaging using spherical Radon transform models[9].

• Two collaborators (M Lewis and G Ambartsoumian) participated in the 2008 NSF/CBMS
Rice Workshop on Imaging in Random Media, where image reconstructions methods
of the types of interest in this research study were the focus.

• A biomedical engineering graduate student supported by this study completed a Mas-
ters of Science thesis on advanced image formation using ultrasound arrays[6].
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Figure 6: Reconstruction of many scatterers - shape estimation fails when there is background
clutter, but detection more robust

• An applied mathematics graduate student supported by this study completed a Ph.D.
dissertation on ultrasound image formation using circular arrays[12]. This individual
subsequently accepted a position as an Assistant Professor of Mathematics at the
American University of Sharjah, United Arab Emirates, where she hopes to continue
her research in breast cancer imaging.

• A joint publication on circular array based ultrasound image formation[13].

• Co-investigator G Ambartsoumian is continuing related work through recently award
National Science Foundation support (NSF DMS-1109417 Elliptical Radon transforms

in image reconstruction).

• An additional manuscript (under preparation, to be submitted to the Journal of the
Acoustical Society of America in 2012) that details successful imaging experiments in
homogeneous, clutter-free backgrounds.

• An abstract and poster were presented at the 2011 Era of Hope conference in Or-
landa, Florida: Novel Imaging Methods for Breast Sonography and Microcalcification
Detection/Estimation[14].
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6 Conclusion

In the context of real biomedical ultrasound imaging, we conclude that inverse scattering
algorithms for detecting microcalfications in heterogeneous tissue may be clinically feasible,
but for the problem of estimating the shape of these microcalcifications (which is an im-
portant clinical indicator) the proposed algorithms, adopted from the RADAR community
where waves propagate in much cleaner environments, only appear to work in simple phan-
toms that do not represent the complexity of biological tissue. The implemented methods
were not robust upon the simple introduction of materials that simulate the scattering asso-
ciated with the effect of cellular structure on biomedical ultrasound. It is unclear how this
family of inverse scattering algorithms can be modified to deal with a random background
medium.

At the onset of this research project, we envisioned that that the breast ultrasound tomog-
raphy systems undergoing clinical trials would soon be available, at least for clinical research.
That wish has unfortunately not been met, so applying the described methods (with only
partial success) in 3D in more complicated phantoms or even living subjects is probably
not warranted at this time. We note however 2 positive developments in this active area of
research. Other research groups (some funded also by DOD CDMRP BCRP) have reported
success using similar inverse scattering algorithms to detect microcalcifications using stan-
dard linear array transducers. In addition, new classes of image reconstruction algorithms
for both detection and imaging in complex media like the breast are continuously being
described, and there is potential that for improved performance in heavy clutter/speckle
imaging[15] in the near future.
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Appendix A - Research related to Task 6

performed under UT Arlington subaward

We consider a simple model of near-field ultrasound tomography, where
a reflecting medium of interest is excited by spherical waves emitted from a
transducer, and the backscattered echoes are registered by a receiver [11, 12].
Assuming an ideal propagative medium, where the speed of sound is constant,
the signal registered at any given moment by the receiver is generated by
reflections from all those points for which the sum of their distances to the
emitter and the receiver is constant (depending on time and sound speed).
In other words, those points are located on confocal ellipses with foci at the
emitter and receiver locations, and the problem of image reconstruction in
2D boils down to the inversion of a transform integrating functions along
such ellipses. In 3D one should consider a transform integrating along the
family of surfaces of revolution (obtained by rotating the 2D ellipse around
its main axis).

Definition 1. The elliptical Radon transform (ERT) of f(x), x ∈ R
2 is

defined as

R̃f(pe, pr, r) =

∫

|x−pe|+|x−pr|=r

f(x)dl(x),

where dl(x) is the arc length of the ellipse |x − pe| + |x − pr| = r.

It is easy to see that the inversion of this transform is an overdetermined
problem (recovering a function of 2 variables from a function of 5 variables).
Hence, one should expect to be able to reconstruct f from restrictions of R̃f

to 2−dimensional families of ellipses. From physical considerations we first
restrict the locations of foci pe and pr (the acquisition geometry) to a curve S

in R
2 (denoting the transform by R̃Sf(pe, pr, r) = R̃f(pe, pr, r)|pe,pr∈S). We

consider the lines and circles for S in this project. Notice, that R̃Sf(pe, pr, r)
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is a three-parameter family, while f(x) is a function of two variables. There
are several ways to reduce the dimension of the family of R̃Sf(pe, pr, r). Mo-
tivated by tomographic models (e.g. [16, 3, 11, 12]) we will assume, that the
distance between the emitter and the receiver stays constant. By matching
the dimensions this way we further denote the ERT by R̃Sf(p, r), where S is
either a circle or a line, and p is the midpoint of the interval joining the foci
of the ellipse.

Notice, that in the degenerate case when the emitter coincides with the
receiver the ellipses become spheres and the ERT becomes a spherical (or
circular) Radon transform (SRT). The latter has been extensively studied in
the past for various applications of imaging and applied mathematics (e.g.
[1, 2, 4, 8, 9, 10, 13, 15] and the references therein). In case of SRT various
exact inversion formulae have been discovered for a limited number of acqui-
sition geometries. These results can be divided into two categories: closed
backprojection type inversion formulae, and expansions into series (usually
involving some special functions). One of the goals of our project has been
obtaining extensions of these results to the case of ERT, and the discov-
ery of some new inversion algorithms. While the work in this direction is
continuing, we can report certain progress here.

We developed an inversion algorithm using the algebraic reconstruction
techniques based on the Kaczmarz method, which can work in any acquisition
geometry. It also provides an effective mechanism for incorporation of certain
side constrains to the reconstruction process, which is an extremely important
tool for stabilizing the inversion in limited data problems. The developed
algorithms have been numerically implemented in Matlab, and are currently
being tested with both synthetic and experimental data. Two publications
describing the developed methods and the obtained results are in preparation.
The mathematical description of the inversion instabilities in limited data
problems has been covered in [17].

We have also made certain progress in generalizing the inversion formu-
las for SRT using series expansion to the case of ERT. Most of the inver-
sion formulas using series expansions for SRT are based on the fact, that
this transform is either shift-invariant, or can become shift-invariant after
a smooth change of variables. For example, the result of [13] is derived as
follows. Let RS be the 2D spherical Radon transform on the plane that inte-
grates functions compactly supported inside the unit disk D over all circles
|x − p| = ρ with centers p located on the unit circle S. Since this transform
commutes with rotations about the origin, the Fourier series expansion with
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respect to the polar angle partially diagonalizes the operator, and thus the
n-th Fourier coefficient gn(ρ) of g = RSf will depend on the n-th coefficient
fn of the original f only. Hence, the problem of reconstructing f from g,
can be reformulated as a problem of reconstructing fn from gn. The lat-
ter requires solving and integral equation, which in [13] is done using the
Hankel transform. In [14] the SRT is inverted in the case of a linear aper-
ture by utilizing the shift invariance of the transform in the direction of the
data acquisition line, and obtaining shift invariance in the orthogonal direc-
tion by a smooth change of variable. Then application of the 2-dimensional
Fourier transform diagonalizes the operator, which enables the inversion. In
case of a non-degenerate ERT in linear acquisition geometry, we have proved
that there does not exist any smooth change of coordinates, which would
make the transform shift-invariant in the second variable, hence one should
not expect inversion procedures using Fourier techniques in this case. In
the case of spherical acquisition geometry the elliptic transform R̃ also com-
mutes with rotations about the origin, hence the inversion method using the
Fourier series expansion may allow generalization to ERT. We have reduced
the problem of recovering f from g to the problem of recovering fn from gn.
The latter is a non-trivial integral equation, and we currently work on its
solution.
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CHAPTER I 
 
 

INTRODUCTION 

 

1.1 Ultrasound Imaging 

 

In conventional medical ultrasound such as B-mode imaging, the amplitude of the back-

scattered ultrasound pulse is used to image tissues along a fixed beam direction1. This 

imaging technique works best in static organs, and it is difficult to image moving organs 

like the heart. The M-mode imaging technique is better for cardiac applications. For 

better image resolution, ultrasound tomography systems were developed in which 

ultrasound data were acquired by transducers placed in a circle around the object2. This 

task of deriving the structure of the object from scattered radiation is known as the 

inverse scattering problem. 

 

The inverse scattering problem is known by several names like reflectivity tomography3 

and diffraction tomography5, 6, 7 etc.  Scattering refers to the effects on wave propagation 

due to an inhomogeneous medium. Since the inhomogenieties are unknown, the goal is to 

determine their properties – the spatial variation in density, compressibility, geometrical 

distribution etc. With the scattered wave field, determining the scatterer is called the 

inverse problem. As for the geometry of the scattering theory, the scatterer is assumed to 
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be present in a homogeneous reference medium with known properties. Following the 

notations used in Lehman8, the acoustic pressure, p, in this medium satisfies the 

Helmholtz equation 

                                         (2 + k2) p(r) = 0                                                                      (1) 

where the pressure field is given by 

                                          p(r,t)=p0+p1(r,t)                                                                       (2) 

The ambient pressure, p0 is constant. Since the scatterer is present in the reference 

homogeneous medium, the pressure field can be written as 

                                      p0(r) = pinc(r) + psc(r)                                                                  (3) 

where pinc refers to the incident field and psc is the scattered field. In an ideal situation the 

incident pressure field is taken as a plane wave  

                                       pinc(r) = p0 eikz                                                                             (4) 

where k is the complex wave number which is given by 

                                      k=(/c) (1- iM)                                                                        (5) 

where M is the compressional viscosity. 

Now, we are in a position to introduce the integral representations of the scattered field. 

In the region exterior to the scatterer, the pressure field is given by 

                                    (2 + k2) p0(r) = 0                                                                          (6)        

Introducing the Green‟s function 

                                    G(r – r’) = eik|r-r’|/|r-r’|                                                                      (7) 

that will satisfy the inhomogeneous impulse equation  
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                                     (2 + k2) G(r – r’) = -4(r-r’)                                                    (8) 

Using one of the most frequently used approximations, the Rayleigh-Born approximation 

we can modify equation (7). At large distance the Green‟s function can be approximated 

by  

                                    G(r – r’) ~ eikr/r  e-ikr.r’                                                                   (9) 

which holds true for k0r‟
2/r <<1. 

A Fourier diffraction theorem based reconstruction technique using the Born 

approximation is derived in Radial Reflection Diffraction Tomography (RRDT) 8. 

Though my work is concerned with time-domain reconstruction techniques, I will discuss 

some existing frequency domain reconstruction techniques. 

 

1.1.1 B-mode Imaging 

B-mode (for Brightness mode) images are 2-D ultrasound images that contain pixels that 

correspond to ultrasound echoes. The value of the pixels corresponds to the amplitude of 

the echo. The image is obtained by sweeping narrow ultrasound through the object while 

detecting the echoes with a linear electronic array. In the B-mode image, the vertical 

position of the bright pixel is determined by the time-of-delay of the ultrasound wave and 

the horizontal position is determined by the location of the receiver. The path the echo 

follows is usually referred to as the beam line. The direction of the propagation along the 

beam line is called the axial direction and the direction perpendicular to this is called the 
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lateral direction. This technique also provides data at various levels enabling the creation 

of three-dimensional image. 

 

The reconstruction technique may be compared to a crude backprojection of the obtained 

data without using any filter. In this way, B-mode imaging is considered very primitive 

form of ultrasound image reconstruction. Better techniques of reconstructing ultrasound 

data were later developed in the scheme of tomographic setup2. 

 

1.2 Interaction of Ultrasound Waves with the Biological Media 

 

Ultrasound is the propagating disturbance of the properties (e.g., pressure and particle 

position) of the tissue through which it travels. Unlike electromagnetic radiation which 

can propagate in vacuum, ultrasound needs the material through which it travels. As a 

consequence this leads to interactions between the physical properties of the tissues and 

the extrinsic properties of the ultrasonic waves such as pressure. Acoustic properties of 

tissues as measured in many experiments were tabulated by Goss and Dunn18, 19. 

In medical imaging applications, the range of ultrasound frequencies used vary from 2-10 

MHz (for imaging deep organs) to 40 MHz (for intrarterial imaging)1. In soft tissues  

 

 



 12 

Material Density (Kg/m3) Compressibility 

(10-12 m2/Nt) 

Velocity 

(m/s) 

Acoustic 

Impedance (106 

Kg/m2s) 

Fat 950 508 1440 1.37 

Blood 1025 396 1570 1.61 

Muscle 1070 353-393 1542-1626 1.65-1.74 

Bone 1380-1810 25-100 27100-4100 3.75-7.4 

 

Table 1.1 Acoustic parameters for some biological materials9 

 

(which are predominantly water) like tendons and fat, the ultrasound propagation velocity 

is around 1500 m/s. Table 1.1 lists few of the acoustic parameters for some biological 

materials9. Though we notice the velocity of sound differs between materials, most of the 

time-domain reconstruction techniques assume the speed of sound to be constant, and the 

body is thus inhomogeneous in density. The speed of sound is related to the density and 

compressibility of the material in the following way: 

                                                      c=1/()1/2                                                                  (10) 

where   is the density and  is the compressibility. Now we are in a position to define the 

term acoustic impedance Z, 

                                                    Z= c                                                                           (11) 

Variations in acoustic impedances cause specular reflection of the waves. 
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 As mentioned earlier the spatial resolution of the ultrasound images depend on the 

frequency of the waves used (higher the frequency, better the resolution). But, higher 

frequencies also mean higher attenuation. So, there is always a trade-off depending on the 

organ of interest. In adult cardiology1 2.5-5 MHz is used to get enough penetration and 

for imaging of intravascular atherosclerosis, frequencies up to 40 MHz is used. The 

positioning of the transducers also plays an important role. For example, the nearest 

possible routes anatomically to place the transducers and image the prostate is transrectal 

and transurethral. This leads to various interesting geometries from a tomographic 

perspective for which no reconstruction algorithms exist. 

 

1.3 Ultrasonic Tomography – frequency domain image reconstruction 

 

So far the basics of ultrasonic imaging have been discussed. These ultrasound principles 

were used for a long time in conventional ultrasonic imaging developed for B-mode and 

M-mode imaging. One of the earliest works which used acoustic imaging in a 

tomographic setup, in the frequency domain, used algebraic reconstruction techniques 

(ART) 10, 11 to form images. Greenleaf used similar techniques to reconstruct the speed of 

sound using time-of-flight profiles12.   Like most ART techniques the work was 

computationally intensive. Then there were techniques based on perturbation solutions of 

the wave equations5. These techniques reconstructed the speed of sound by 

approximating it by a small perturbation to velocity in the surrounding medium. Using 
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few first-order perturbation equations, images were reconstructed. There were old 

techniques that reconstructed spatial distribution of acoustical absorption with tissues 

from their two-dimensional projections13, in a manner analogous to filtered 

backprojection. 

 

1.4 Diffraction tomography Methods (Frequency domain imaging techniques) 

 

There is another tomographic technique to reconstruct acoustic data called the diffraction 

technique. There are two important approximations that are used to approximate the wave 

equation, namely the Born15 and the Rytov16 approximations that transform homogeneous 

wave equation into nonhomogeneous equation using perturbation methods which can 

then be solved analytically which will include the effects of diffraction. 

 

1.4.1 The Born approximation 

 

Let us start with the Helmholtz equation and using the notations used by Lehman8, we 

have 

                                              2 + K2=0                                                                     (12)  

If the total wave is the sum of incident and scattered wave, i.e. 

                                               =sc +inc                                                                       (13) 

then equation (12) can be written as  
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                                               2sc+k0
2sc=Oinc                                                           (14) 

where 

                                       O=- k0
2(B2-1)                                                                            (15) 

and the object function, 

                                        B2=k(x)2/ k0
2                                                                                

(16) 

where k(x) is the wavenumber of the medium which varies spatially and k0 is the 

wavenumber of the background medium. We arrived at equation (14) with an important 

assumption inherent with the Born approximation, 

                                        sc<<inc                                                                                                                           (17) 

that is, it assumes that the amplitude of the scattered energy is much less than the incident 

energy. 

 

1.4.1 The Rytov approximation 

 

Let us start again with wave equation (12) and substitute 

                                        (r) =exp(i k0(r))                                                                  (18) 

where we express  in a form that assumes the information to be in the phase part of an 

exponential form, where complex phase allows for spatial variation in both propagation 

velocity and attenuation. The substitution results in 

                                       i k0
-12  -  ||2 + A2=0                                                          (19) 
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where  

                                        A=1+                                                                                     (20) 

where  is the change in refractive index. Now, let =0+1 where 0 is the phase 

component of the pressure distribution (r) for no perturbation and where 1 is the phase 

perturbation due to perturbation in the refractive index. Substituting the perturbations into 

equation (19) we get, 

                           i k0
-120+ i k0

-121-|0|2-2(0. 1) -|1|2+1+2+2                           (21) 

Ignoring 2 and |1|2, we get, 

                                        2(1 exp(ik00)) +  k0
2(1 exp(ik00))=i2k0 exp(i k00)                    (22) 

Equations (22) are the Rytov‟s approximation and it has the same form as equation (14). 

Equations (14) and (22) are both linear and their solution is a convolution of Green‟s 

solutions with the source terms for all space. The result is obtained by Tribolet17. 

 

1.4.2 Monostatic forward scattering model 

 

To develop a linear forward scattering model for monostatic setup we start with the 

Helmholtz equation that governs the wave propagation and scattering, 

               [2 +k 2(r)] (r,ω) = -p(r,ω),                                                                           (23) 

where r is given by the polar spatial coordinates r(cos, sin) of a point in the 

surrounding medium, ω, the temporal frequency, k (r) is the wavenumber of the medium, 

(r,ω) is the total field, p(r,ω), the incident pulse temporal spectrum. To remove the 
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spatial inhomogeneity in equation (23), we add the background wavenumber, k0(ω)= 

ω/0, to both sides of the equation and move the inhomogeneous term to the right hand 

side to obtain,  

             [2 +k 02] (r,ω) =-p(r,ω) – [k2(r) - k 02(ω)] (r,ω)                                          (24) 

Defining the object function as, 

              o(r) = (k2(r)/ k 02) -1                                                                                          (25) 

equation (24) becomes, 

             [2 +k 02] (r,ω) = =-p(r,ω) - k 02(ω) o(r) (r,ω)                                             (26) 

where the term k 02(ω) o(r) (r,ω) is known as the secondary source which creates the 

scattered field. To convert equation (26) into an integration equation we have to use the 

Green‟s theorem43. Equation (26) now becomes, 

            (R,ω)=∫drG(R,r’,)P(r’,)+ k0
2 ()∫dr’G(R,r’,)o(r’)(r’),                        (27) 

where the Green‟s function is given by, 

           G(R,r,)= eik0|R-r|/4|R-r|                                                                                     (28) 

The first integral in equation (27) is the primary field, inc(R,ω).Subtracting it from the 

total field yields the scattered field, 

          scat(R,)= (R,)- inc(R,)= k0
2()∫drG(R,r,)o(r)(r)                                (29) 

Evaluating the scattered field on the measurement surface, r0, we obtain, 

         scat(r0,)= k0
2()∫drG(r0,r,)o(r)(r)                                                                (30) 

The above equation is nonlinear the scattering term is on both sides and is under an 

integral on the right hand side. Therefore to reconstruct an estimate of o(r), we need to 
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simplify the equation by linearizing it. We can do it by assuming that the medium is 

weakly scattering and that the first Born approximation holds. Therefore equation (30) 

becomes  

         born
scat(r0,)= k0

2()∫drG(r0,r,)o(r)inc(r)                                                        (31) 

We further assume the incident field is the results of a point source at r0, so that 

p(r,ω)=P(ω) (r0-r), where P(ω) is the incident pulse spectrum. With this assumption, 

the incident field is, 

       inc(r,) = P(ω) G(r0,r,),                                                                                       (32)  

and equation (31) becomes 

      born
scat(r0,)= P(ω) k0

2()∫drG2(r0,r,)o(r)                                                            (33) 

where the squared Green‟s function is the result of the transmitter and receiver being 

located at the same point. Using equation (28), the forward model of the monostatic setup 

is expressed as follows 

      born
scat(r0,)= P(ω) k0

2()/(4)2∫dr ei2k0(ω)|r
0

-r|/|r0-r|2 o(r)                                       (34) 

We will see later how this model differs in a bistatic setup owing to the fact that the 

transmitter and locater are not colocated anymore. 

 

1.4.1 Green‟s function for the Helmholtz equation 

 

It is important to give a brief discussion of the Greens function of the Helmholtz‟s 

equation at this juncture for the case of 2-D and 3-D. A detailed explanation and 
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derivation of the all equations discussed in this section can be found in Barton43. 

Following the notations used by Barton43, we have the Green‟s function for the operator 

in the wave equation (-R
2 +((1/c 2)2/2  where R= r-r’ as they propagate is given by                                           

Case I Three Dimensions 

                G0=(-R/c)/4R                                                                                       (34.1) 

This disturbance is expanding shell with radius c. Beyond this point there is no trace of 

the disturbance which means there is no afterglow. Moreover, the Huygen‟s principle 

works in 3D. 

 

Case II Two dimensions 

                  G0= 1/2((-R/c))/ (/[2-R2/c2]1/2                                                           (34.2)  

 It can be seen that the impulse response rises steadily from zero to infinity. It becomes 

infinity at =R/c and diminishes after this point. IT diminishes and faces to zero which 

means there is an afterglow. The Huygen‟s principle does not work in 2D.                                                   

 

1.5 Time-domain ultrasound imaging 

 

Time-domain image reconstruction techniques show how to reconstruct an image of a 

point reflecting object from broadband pulse-echo data generated by translating a single, 

omni-directional source-receiver over a suitable aperture. This means that the goal of a 
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broadband imaging system is to use the wide „temporal‟ frequency bandwidth (generated 

by a large transmitting and receiving aperture), to obtain the complete information- 

 

                    

 

 

  

 

bearing capacity of these signals. One of the earliest works which tackled the time-

domain found in the work of Norton 20.To explain this monostatic model, where the same 

transducer acts as a transmitter and receiver (Figure 1), consider an infinitesimally short, 

spatially diverging pulse that is emitted into a two-dimensional weakly reflecting 

medium. If the reflected echoes are recorded at the same location (that is the location of 

the transmitter), as a function of time, line integrals of the property of the medium under 

study (e.g., reflectivity) over a family of concentric circles centered at this point are 

obtained. This model could be understood by observing that a diverging circular 

Figure 1. Monostatic setup of 
ultrasound tomography system. 
Shown here is the location of the 
point of transmitter/receiver 
(green) and few samples of radial 
projections. 

Figure 2. Moving the transducer 
to various locations (angular 
samples in addition to radial 
samples) on the circle, circular 
integrals are obtained over 
multiple intersecting paths. 
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disturbance produced by two-dimensional isotropic source, at any point in time, produces 

reflected waves simultaneously over the length of the arc illuminated by the wavefront at 

that point in time. These echoes arrive back at the receiver at the same instant of time 

where they are „integrated‟ producing line integrals of the property of the medium over a 

family of concentric circles (as a function of time). Several such data are obtained by 

moving the transducer at various points (Figure 2) on the boundary (the boundary usually 

being a circle). The data obtained are reconstructed using various methods, one of the 

earliest being attempted in the work of Norton20. I will discuss some of the popular 

reconstruction techniques in the next chapter. Though these reconstruction techniques do 

not produce a perfect image because the system is limited by both finite temporal and 

spatial frequency bandwidth (limited spatial frequency bandwidth because of finite 

aperture), they improve the considerably improve the temporal-spatial system response 

compared to the conventional delay-and-sum method of imaging21. 

 

1.5.1 Photo/thermo acoustic imaging 

 

Several time-domain reconstruction techniques are used in a hybrid modality imaging 

techniques known as a photo(thermo) acoustic imaging. Photoacoustic (PA) effect 

reported by Alexander Graham Bell22 is the basis for PA imaging. The phenomenon is 

the generation of acoustic waves by the absorption of electromagnetic (EM) energy, such 

as radio-frequency (rf) waves23. Photoacoustic imaging uses the high EM contrast at high 
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ultrasound resolution in large volumes of biological tissues24.Similar to the transducer 

setup described in the previous subsection for the monostatic geometry, the acoustic 

waves due to PA effect generated by the initial sources inside the tissue reach the 

boundary with various time delays. The image resolution as a function of imaging depth 

is depended upon the detected ultrasonic bandwidth25.With the help of temporal PA 

signal, depth-dependent information of the object can be determined. This is called PA 

depth profiling26.  

 Similarly, microwave induced themoacoustic imaging also exist in literature27. In this 

case, microwave pulses generate acoustic waves in a lossy medium. Although 

microwave-induced thermoacoustic imaging shares similar principles with photoacoustic 

imaging in the optical wavelength28, it may have a wider use in medical imaging because 

microwaves penetrate deeper and more uniformly in biological tissues than light. Since, 

both these techniques in a tomographic setup share a similar model with the monostatic 

ultrasound tomography, we will consider only photoacoustic imaging. 

 

1.5.2 Forward model based on spherical Radon transform 

 

To image complex structures, in recent years, an imaging method called photoacoustic 

tomography (PAT) 29, 30 has caught wide attention. A forward model based for this 

imaging technique based on spherical Radon is similar to the monostatic ultrasound 

imaging. 
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 Let the colored grid in figure 1 be a two-dimensional function f(r,) (describing for 

example, the reflectivity of the medium) defined in the inside of the circle of radius R. 

Let a  short pulse of sound be emitted from a point (indicated in green color in figure 1) 

on the circumference at an angle  measured from the positive x axis and the 

backscattered acoustic wave is recorded at the same point as a function of time. This 

generates line integrals over circles centered at this point. In other words, Spherical (or 

circular in two dimensional cases) Radon transformed projections. From a tomographic 

setup, this process of data acquisition is repeated on several points on the circumference 

(figure 2). The aim is to reconstruct f(r,) from circular integrals obtained from all the 

points on the circumference. To state symbolically, our aim is to reconstruct f(r,) from 

the following circular integrals: 

                                             g(,)= ∫ℓ(,)f(r,) ds                                                          (23) 

where g(,) is the spherical Radon transform of  f(r,). The path along which the 

function f(r,) is denoted by ℓ(,), which is a circle, parameterized by two variables  

and , where  is the radius whose center lies on the point of measurement on the 

circumference of the enclosing circle at angle .  

 In a two-dimensional form equation (23) can be written in the following way: 

                     g(,)=
0

rdr
2

0

),( drf x {[r2 + R2 -2rR cos(-)]1/2 - }                     (24) 

the delta function follows the circular path in the (r,) plane. 
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 Equation (24) is the forward model based on the spherical Radon for monostatic 

ultrasound imaging. The same is applicable to photoacoustic imaging with a slight 

modification in the model. In the latter, there is no “emitter” because the acoustic waves 

are generated by a different mechanism (photoacoustic effect), but only the receiver.   

There are several reconstruction techniques to recover f(r,) which I will discuss in the 

next chapter. 

 

1.5.3 Inverse source problem in photo/thermo acoustic tomography 

 

As mentioned in the previous section, in the scheme of photoacoustic tomography, there 

are only receivers and no transmitters. Since, the acoustic waves are generated inside the 

object at some source, the problem of reconstructing the object from the data acquired by 

the receivers is called the “inverse source problem”. Each temporal photoacoustic signal, 

measured at various locations of the receivers, provides one- dimensional radial 

information about the photoacoustic source relative to the receiver location. Often small-

aperture receivers are used to approximate point detectors, which receive photoacoustic 

signals originating from spherical (circular in 2D) shells centered at each point detector, 

with the radius determined by the acoustic times of flight. For large aperture detectors, 

the reconstruction algorithms are different. One such reconstruction is attempted in 31. 

Let us assume a heat source H(r, t), and a pressure to its response at position r and time t, 

p(r, t) in a homogeneous medium. Following the notations of Xu24, the pressure would 
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follow the following wave equation, ignoring effects of thermal diffusion and kinematic 

viscosity32: 

                           2p(r, t) – 1/c2 2/t2 (p(r, t)) = -/Cp /t (H(r, t))                             (25) 

where  is the isobaric volume expansion and Cp is the specific heat33. 

The solution to equation (25) is expressed by 

                            p(r, t) = /4Cp ∫∫∫ d3
r‟/|r-r’| /t’ (H(r’, t’))  |t’=t-|r-r’|/c                       (26) 

The heating function can be written as a product of two separable variables, spatial 

absorption function and the condition of thermal confinement,  

                           H(r, t) = A(r)Ie(t)                                                                                  (27)      

Now equation (26) can be written as a convolution between the temporal profile Ie(t) and 

the acoustic wave form p(r,t) that is excited by an infinitesimally short pulse (t), 

                          Pe(r, t) = dptI e ),()( r                                                              (28) 

where 

                          p(r,t)=  /t[ 1/4 ∫∫|r-r’|=ct p0(r‟) dΩ’ ] ,                                                (29) 

where dΩ’ is the solid-angle element of vector r‟ with respect to the point at r; and p0(r) 

is the initial pressure excited by a (t) electromagnetic source, computed by 

p0(r)=(r)A(r), which acts as the source for the propagating acoustic wave. 

Let us assume a very simple electromagnetic source (t), and the photoacoustic signal is 

detected at the location r0 by a point detector. The signal detected at that transducer can 

be symbolically written as, 
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                               Pd(r0,t)=  /t[ 1/4 ∫∫|r-r’|=ct  p0(r) dΩ ]                                             (30) 

where dΩ  is the solid-angle element of vector r with respect to the point at r0. 

The goal is reconstruct p0(r) from the acquired data Pd(r0,t). 

 

1.5.4 Relationship between the acquired data and the Radon transformed 

projections 

 

Rewriting equation (30), we obtain, 

                            F(r0,t)= 4/t 
t

0

Pd(r0,t) dt = ∫∫|r0 – r’| p0(r) dΩ                                     (31) 

                  

 

 

The function F(r0,t) gives the spherical Radon transformed projections of p0(r). r0 is the 

location of the detectors which is usually on a circumference of a circle centered at the 

center of the object and t is the time at which “radial” projections are obtained. 

Figure 3. Bistatic setup of 
ultrasound tomography system. 
Shown here is the locations of 
the points of transmitter and 
receiver (green) and few samples 
of “radial” projections. 

Figure 4. Bistatic setup of 
ultrasound tomography system. 
Shown here is the locations of 
the points of transmitter and 
receiver (green) at various 
angular positions and few 
samples of “radial” projections. 
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The Radon transform approximation yields good results for circular detection geometry. 

All the reconstruction techniques existing for the circular detection geometry hold well 

only when the center of the object is centered at the center of the circle. Significant 

artifacts appear when the source deviates from the center. Another important assumption 

in most of the time-domain reconstruction techniques is that the speed of sound, c, is 

constant inside the medium. This assumption is reasonable because the variation in the 

speeds of sound in biological medium is very less. 

 

 

 

 

Figure 5. Definition of an 
ellipse. As can be seen from 
the figure, an ellipse has five 
degrees of freedom. 



 28 

There are other approximations which have been attempted wherein a 2D Radon 

transform was approximated with a Hilbert transform37. The most common form of 

reconstruction, backprojection for tomographic data, will be discussed later. 

 

1.5.5 Bistatic time-domain ultrasound imaging (Elliptical Radon transform-based 

imaging) 

 

Unlike monostatic setup in ultrasonic imaging, in bistatic setup the locations of the source 

and the detector differ. In this respect, monostatic imaging can be considered a special 

case of bistatic imaging. Whenever the source and the sensors are not at the same 

location, surfaces of constant time of flight are ellipses, whose foci are the locations of 

the transmitting and receiving transducers. 

Some conventional medical imaging systems like focus-and-steer imaging34 and 

synthetic-focus imaging35 with complete dataset include the effects of backscattered 

signals acquired by detectors not at the same location as the source. Image reconstruction 

using elliptical projections can also be found in applications like Synthetic Aperture 

Radar (SAR) imaging36. The geometric setup used in this modality is not appropriate for 

medical imaging. 
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A. Parameters of an ellipse and the elliptical Radon 

 

Consider an ellipse (Figure 5) with foci at xe and xr. The family of ellipses at these foci 

has semi-major axis a, semi-minor axis b and a foci separation of 2c=| xe - xr|. The vector 

form of ellipse can be written as  

                                               |x-xe| + |x-xr|= 2a                                                              (32) 

Next, we make an identity linking the a and c with the eccentricity e of the ellipse, 

                                                a=c/e                                                                                (33) 

implying, 

                                               |x-xe| + |x-xr|=1/e |xe-xr|                                                   (34) 

e is defined the domain 0≤e<1. 

One possible definition of elliptical Radon would therefore be 

                                               Rxe,xr(e) = ∫|x-xe| + |x-xr|=1/e |xe-xr| f(x) ds                                 (35)               

There are five parameters in this expression. If we additionally require that the semi-

major axis be orthogonal to a line, then the number of degrees of freedom can be reduced 

to four. At present, nothing is known about the analytical inversion of this transform. 

Even a Fourier slice theorem is lacking. The earliest known approximate reconstruction 

was attempted in 198938.  



 30 

To define the elliptical Radon, consider the locations of a transmitter and a receiver on xy 

plane on the y axis with y coordinates +/- d from the origin. Then a pulse moving from 

the transmitter to the receiver from a point (x, y) in the plane travels a distance A: 

                   A= 222 )( xdyh + 222 )( xdyh                                            (36) 

The signal arriving at the receiver at a time instant t=A/c is that due to all signals which 

have traveled a distance A. the geometry dictates that the signal must have reflected from 

the loci in the xy plane given by a re-arrangement of equation (36):  

                     x2 + y2= (1-4d2/A2) =A2/4 – d2                                                                    (37) 

which is an ellipse centered at the origin with A and d being constants. 

To convert the expression from time-dependent equation to a spatial one, we introduce a 

new variable r2= A2/4 – d2, we have 

                        x2 + y2(r2/ r2+d2)= r2                                                                                (38)        

where the semi-minor axis which lies on the x axis and is of length r and the semi-major 

axis lies on the y axis and is of length 

                           yr= r 222 /)( rdr                                                                              (39) 

It can be seen clearly, when d=0 (monostatic case), yr= r which is the same length as the 

semi-minor axis, indicating the geometry is a circle. The aspect ratio of the ellipse is 

defined as the ratio of its semi-minor axis to the semi-major axis. It can been that the 

aspect ratio of the ellipse defined above changes smoothly from 21 d for small r to 1 

for a circle. The ellipse will start appearing like a line for large d. 
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If the ellipses are parameterized using polar coordinate, 

                            x=r cos                                                                                               (40) 

                            y= r 222 /)( rdr sin                                                                      (41) 

then the “elliptical” measurement at the receiver, with ellipse centered at the origin, and 

the time corresponding to the radius r, is 

 

       F(r) = f(x,y)(x2+y2 (r2/r2+d2) – r2) dxdy 

        = r
2

0

f(rcos, r 222 /)( rdr  sin) 2)/cos(1 rd d                                    (42) 

where the differential length dl of the line integral is written in terms of the integration 

variable d as: 

           dl= r 2)/cos(1 rd                                                                                          (43) 

Equation (42) gives a generalized elliptical Radon transform.  

 

B. An engineering derivation of the elliptical Radon model from the time-dependent 

wave equation 

 

Starting with the wave equation in the time-domain, we have 

            (2-tt) u(r,t)= s(r,t)                                                                                           (44) 

For a non-zero eigenvalue, the Green‟s function exists, given by 
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            LG (x, x’) = (x-x’)                                                                                             (45) 

where L=(2-tt) , and 

            Lf(x)=s(x)                                                                                                            (46)   

 

which implies, 

           f(x)=∫B.C s(x’) G(x,x’) dx’                                                                                     (47) 

Now, 

          (2-tt)p(r,t,r’,t’)= (r-r’)                                                                                     (48) 

           p(r,t,r’,t’)= 1/(4| r-r’|) (t-t’ - |r-r’|)                                                                  (49) 

 

 

 

 

 

 

 

We use p(r,t,r’,t’) to propagate signal from source to scatterer, and then from scatterer to 

receiver. Using the implicit Born approximation for single scatterer, we calculate 

incident field, 

(2-tt) ui(r,t)= (r-a) (t-0)                                                                                            (50) 

scattered field, 

a 

b 

transmitter 

receiver 
Figure 6. Position vectors 
of the transmitter and the 
receiver which act as the 
foci of the ellipse 
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(2-tt) us(r,t)=o(r)ui(r,t)                                                                                                 (51) 

Using the positional vectors, we derive, 

incident field, 

ui(r,t)=p(r,t,r’=a,t’=0)= 1/(4| r-a|) (t - |r-a|)                                                               (52) 

and the scattered field, 

(2-tt) us(r,t)= s(r,t)                                                                                                       (53) 

where, 

s(r,t)= 1/(4| r-a|) o(r) (t - |r-a|)                                                                                    (54) 

where o(r) is the scattering object. 

Solving for the scattered field, we get, 

us(b,t)= ∫t’,x’ s(r,t) G(b,t,r,t’)dx = 1/(4)2∫ o(r)/|r-a| (t - |r-a|) (t-t’- |b-r|)dxdt            (55) 

 

where 

(t - |r-a|) (t-t’- |b-r|) =(t - |r-a|- |b-r|)                                                                         (56) 

Equation (55) gives the wave form in time-domain as an elliptical Radon transformed 

projection.. 
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CHAPTER II 
 
 

REVIEW OF LITERATURE 

 

The problem of recovering a function from a subset of its spherical means, which has 

applications in both photo/thermo acoustic tomography and monostatic imaging, has been 

of interest to applied mathematicians and engineers for several years. One of the first 

works to tackle this problem was the seminal paper also by Norton39. The author was 

interested in the problem in the scheme of ultrasound reflectivity problem and this paper 

dealt with the geometry where spherical radon transformed projections are obtained on 

locations on a circumference of a circle. In an earlier paper20 by the same author, the 

same line-integral model was used for an analysis of a reflectivity reconstruction 

problem. But here, the problem was analyzed for the case of an omni-directional source-

receiver moved along a straight line in the boundary of a half-plane. That kind of a 

modeling would be appropriate for Synthetic Aperture Radar (SAR) imaging. During the 

time his paper was published39, most of the acoustical imaging systems in medical 

diagnosis employed highly directional sources and receivers (like the traditional single 

probe system) to provide resolving power transverse to the direction of propagation 

whereas the solution to the reflectivity reconstruction problem in his paper was the basis 

for a high-resolution, tomographic imaging techniques that employs omnidirectinal 

transducer elements like the one shown in Figure 6. 
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The reconstruction to the problem is obtained by deriving a relationship expressing the all 

the circular harmonic coefficients of the function to be recovered in terms of the 

projections obtained at each angular location. This, approach, which may be termed the 

method of circular harmonic decomposition, is possible because of the problem‟s 

inherent circular symmetry. That is precisely the reason why the same approach cannot 

be done with elliptical Radon transformed projections because they lack symmetry. Then 

a Hankel transformation is performed on each harmonic coefficient to yield the 

corresponding harmonic coefficient of the original function. Finally, the function is 

recovered by inserting the harmonic coefficients into the angular Fourier series. In 

essence, the method suggested in this paper can be made to resemble a convolution-

backprojection operation. It is easy to perceive that as the radius of the enclosing circle 

becomes large relative to the size of the object, the integration paths intersecting the 

object approach straight lines. In that case the convolution-backprojection formulation 

reduces to that of conventional computerized x-ray tomography. 

Figure 6. When an 
omnidirectinal element sends 
out a pulse and measure the 
echoes back as a function of 
time, line integral over 
circular paths of reflectivity 
are measured. 
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As mentioned previously, if the measurements are made in the far field with respect to 

the scattering region, where the Born approximation is usually applicable, then the 

scattering distribution and the scattering measurements bear a simple Fourier transform 

relationship to each other41. But in a practical medical imaging system Born 

approximation is impractical because the far-field approximation imposes unreasonable 

constraints on imaging distances. Without the far-field approximation exact inversion 

formulas are obtained by some authors using monochromatic illumination42. But these 

solutions are derived under the assumption of weak scattering using the first-order Born 

or Rytov approximations as mentioned in the previous chapter. But a three-dimensional 

inverse scattering problem was examined for the more general case of broad-band 

illumination without a far-field approximation40. Here, broad-band omnidirectional 

spherical waves are assumed to be the incident waves. 

In frequency domain, there is another wave-based tomographic imaging algorithm that 

was developed based upon a single rotating radially outward oriented transducer8. The 

geometrical setup is similar to the one shown in Figure 2. But since this is a frequency 

domain imaging technique, a spherical Radon model is not appropriate, but the 

acquisition of data is very similar to it. At each angular location at a fixed radius, the 

transducer launches a primary field and collects the backscattered field in what is called a 

“pitch/catch” operation. This is similar to the medical intravascular ultrasound systems 

(IVUS). IVUS systems use conventional ultrasound imaging called the B-mode imaging. 

Goss8 develops a wave-based imaging algorithm using diffraction tomography 
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techniques. In his work a mutimonostatic mode is used for data acquisition. 

Mutimonostatic is a terminology used when a single transducer is rotated along the 

circumference of the circle as opposed having many transducers on a circle and sending 

and receiving signals at the same time. The implementation of this model reduces the 

hardware resources and also interference effects of acoustic waves. The author derives an 

analytic expression for the multimonostatic inverse and uses Hilbert space inverse wave 

algorithm to construct images. 

In recent years researchers have taken interest time-domain reconstruction algorithms 

based on spherical Radon transformed model because if its applications in 

photo/thermoacoustic tomography. A limitation of these methods is that the Radon 

transform model is appropriate only when then medium is insonified by an impulsive 

(infinite bandwidth) wave. When pulses of finite bandwidth are employed, image quality 

can be compromised significantly44. But the existing frequency-domain algorithms 

provide high quality images for many numbers of discrete frequencies that is 

computationally very demanding. Some authors have worked on time-domain waveform 

for inverse scattering methods by the method of frequency decomposition to work the 

spatial Fourier transform46 and others on quantitative time-domain imaging45. 

The earliest known spherical Radon transform based image reconstruction was 

investigated by Norton39. The paper was based on circular harmonic decomposition. 
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But only recently, a paper provided a filtered-back projection (FBP) based reconstruction 

for the spherical Radon transformed data in 2-D47. FBP algorithms for 3-D have existed 

for a longer time. The authors provide a log-based filter to invert spherical Radon 

transformed data in even dimensions. If the spherical Radon transform Mf of a function f 

is defined in the following way, 

                     (Mf)(x,r)=1/|Sn-1|∫Sn-1 f(x+r) dS()                                                             (57) 

where |Sn-1| denotes the area of Sn-1 in Rn and ds () denotes the area measure on the 

sphere which in two-dimensions would be arcs. 

The reconstruction formula suggested in the Finch47 paper is (following the notations of 

the paper), 

                 f(x)= 1/2R0 ∫S
02

0

22 )(||||log),)((
R

rr pdrdspxrrpMfr                                   (58) 

where R0 is the radius of the circle on which the detectors are placed, p is the angular 

location of the detectors and r is the radius over which the circular integrals are measured 

with p as center.  

An explicit representation for the wave is given in terms of the spherical radon transform, 

                   u(p,t)=1/(n-2)!t
n-2 

t
n drrpMfrtr

0

2/)3(22 ),)(()(                                       (59) 

where n gives the dimension. Interesting to note here is that this solution to the initial 

value problem gives u as a function of time t, whereas the conventional image 

reconstructions are for a constant time. 
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One of the earliest attempts to reconstruct elliptical Radon transform data approximately 

was attempted in38. Each elliptical Radon transformed projection is back projected with a 

weight that is equal to the product of the distance of a point on the ellipse from the two 

loci. Recently, authors have attempted48 a Fourier transform based image reconstruction 

for ellipsoidal projections. The work does not clearly define and explain the elliptical 

Fourier transform. 
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CHAPTER III 
 
 

METHODOLOGY 

 

In the background section we saw several formulas to reconstruct a function from the 

spherically Radon transformed data. In theory all these formulas assume continuous 

functions. In real applications that would mean obtaining infinite amount of data which is 

practically not feasible. For example, we can have only a fixed number of detectors for 

the monostatic setup or move a single transducer at fixed number of angular locations. 

For the monostatic setup, the numerical implementation of the filtered backprojection 

algorithm derived in47 100 equally spaced angular samples and 100 equally spaced radial 

samples were used. 

The discrete version of the forward problem47 can be stated as follows, 

Fk,m = (Mf) (pk,rm),                                                                                                           (60) 

where F is the spherical Radon transformed projections, pk is the angular location given 

by, 

pk = R0(cos(kh), sin(kh)) where k runs from 0 to 100 in steps of 1 and rm=mhr where h 

is the angular spacing given by 0.0622 radians (2 divided by angular samples) and hr is 

the radial spacing which is equal to 1.4142 “pixel” units. The radius of the circle R0 on 

which the transducers are placed are determined by half of the diagonal of the size of the 

square object which is 100 pixels each side. The radial spacing is obtained by dividing 

the diameter of this circle by the number of radial samples.  

To implement equation 58 to reconstruct the function we need to calculate the partial 

derivative with respect to r. To be exact, we need to calculate the r+rr
2 of the obtained 
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projections. To discretize differentials, we approximate with symmetric finite differences 

of the samples in the projection Fk,m+1-Fk,m-1/2 hr and for the second order partial 

derivatives, we use Fk,m+1-Fk,m-1-2Fk,m/ hr
2. The discrete version of the entire expression of 

r+rr
2 acting on the projection would be as follows, 

          1/ hr((m+1/2) Fk,m+1 + (m-1/2)Fk,m-1- 2mFk,m                                                         (61) 

where Fk,-1=Fk,Nr+1=0 because of the boundary conditions. 

Now, the integration along circular paths over all angles is performed by linear spline 

interpolation, interpolating the projections at the positions rm. The discrete version of the 

interpolation operator is defined as follows 

        Tk[G](r)= Fk,m+ r-rm/hr(Fk,m+1-Fk,m)                                                                        (62) 

where r is in between two consecutive radial samples rm and  rm+1.Therefore the discrete 

version of the entire equation (58) is as follows 
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Finally, the discrete version of the back-projection operator47 is given by 

          1/(N+1)
N

k

ki pxF
0

|)(| ,    xi D                                                                 (66) 

The computational efforts are O(N3) for the FBP because all (N+1)2 reconstructions for 

the points in the image, N+1 summations must be done. Here N=N=Nr=100. The 

reconstructions were performed when both the object was inside the ring of detectors and 

exterior to it. In the exterior case, there were more radial samples from one half of the  

ring of detectors like shown in Figure 7. In this case, the object to be reconstructed is on 

the top right of the ring of detectors; the detectors on the left half of the ring of detectors 

will have more radial spacing than the right half. The radial spacing increase 

proportionately as the distance between the ring of detectors and the object increases. 

For the bistatic case, the distance between the transmitter and the receiver remain 

constant throughout data acquisition. This would geometrically mean that the distance 

between the two foci of the ellipse remain constant. In addition, a further constraint was 

imposed that the major axis remains tangential to the circle on which the pair of 

transducers are rotated. The center of the ellipse, the mid-point of the major axis is the 

angular location ek, where k runs from 0 to 100 with an angular spacing of 0.0622 

radians.  

Figure 7. Exterior data 
acquisition. If the object is at 
the top right of the ring of 
detectors, the detectors on the 
left half of the ring will have a 
higher radial spacing than the 
right half 
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We are at a position to define the eccentricity  of an ellipse. If the major axis of the 

ellipse is a and the minor-axis b, then the eccentricity is defined as a follows 

                       = 2)/(1 ab                                                                                          (67) 

And the distance from the center to either focus is ae which is equal to 22 ba . In my 

numerical implementation of the forward model, the distance between the foci remains 

constant. If the constant is c, then for linear samples of major axes am=mar, where m runs 

from 0 to 100 in steps of 1 (ar=1), then the samples of minor axes are calculated as 

follows, 

                                    bm= 22)( cam                                                                         (68) 

which means the samples of minor axes do not increase in a linear fashion. 

For the backprojection, the projections were smeared aback along elliptical arcs with the 

filter that was used in the monostatic setup. Here, the log based filter had values of 

samples of minor axes as opposed to the radial samples in the case of mono-static setup.  

In the case of multi-bi-static setup, where there are more than one receiver per 

transmitter, the filter contained samples of eccentrities of the ellipses instead of the radial 

samples. In this case, the eccentrities start from zero (where an ellipse is a circle) and 

approach towards the value 1 as a the receiver moves farther away from the transmitter 

on a circle and moves back to the value 0 as the pair of transducers get closer. 
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CHAPTER IV 
 
 

FINDINGS 

 

In this section, I will present the results for the FBP reconstructions of phantoms for 

various geometrical setups. For the monostatic setup, a 100X100 Shepp-Logan phantom 

was used (figure 8). 

                     

 

 

For N=N=Nr=100, for a total angular data acquisition of 360 degrees, the corresponding 

sinogram of the Shepp-Logan phantom is shown in Figure 8.  

The reconstructed image using the FBP algorithm mentioned in the methodologies 

section is shown in Figure 9. 

 

Figure 7. 100X100 Shepp-
Logan phantom 

Figure 8. The corresponding 
sinogram of the phantom 

Figure 9. The reconstructed 
image from the obtained 
sinogram using the FBP 
method 
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The following image shows the reconstruction of a point source (Figure 13). 

                  

 

 

 

         

Next, for the phantom shown in Figure 13, the algorithm was used to reconstruct the  

 

Figure 13. The phantom used 
for partial reconstruction. 
The location of the detectors 
is shown with white dots. 

Figure 10. A point source at 
origin 

Figure 11. Sinogram of a 
point source at origin 

Figure 12. Reconstruction of a 
point source 
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object from half the data. This kind of modeling is most appropriate for breast cancer 

imaging using the tomographic modality. The corresponding sinogram and the 

reconstruction are shown in Figures 14 and 15 respectively. In this case N=N=Nr=100 

with an angular coverage of 180 degrees. 

 

               

 

 

 

 

 

 

For the case of exterior reconstruction, where the object was placed exterior to the ring of 

detectors (top right to the ring of detectors, with the center of the object 2N pixels from 

the center of the ring of detectors with radius of 2 N pixels. In this case N= N= Nr=100 

but the radial spacing for the detectors on the left half is twice that of the right half. The 

phantom used is shown in Figure 7 and the corresponding sinogram is shown in Figure 

16 and the reconstruction using FBP is shown in Figure 17. 

 

Figure 14. The sinogram of 
the phantom shown in Figure 
10 for partial angular 
coverage 

Figure 15. Reconstruction of 
phantom shown in fiure 10 
for partial angular coverage 
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To understand the behavior of the filter for the bistatic case, a different phantom was used 

as shown in Figure 18. It is a 100X100 binary phantom with a square in the middle of the 

phantom of 100 pixels each side. 

Figure 16. The sinogram 
obtained for an object placed 
exterior of the ring of 
detectors 

Figure 17. The reconstruction 
with artefacts for the exterior 
case. 

 

Figure 18. 100X100 binary 
phantom used with a square 
in the middle of 10 pixels each 
side.  
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For N= N= Na=100, and for a angular coverage of 360 degrees, the corresponding 
sinogram is shown in Figure.19. The reconstructed object is shown in Figure 20. Since, 
the filter is a „computational‟ quantity and to understand its spatial behavior, the square 
on the binary phantom was spatially moved. The following images were moved along the 
x-axis with no change in the y-axis. The image was moved every 2-pixels on either side 
of the center. To conserve space, few are shown here. A graph comparing the spatial 
location and the error in reconstruction will follow. 
 
 
 
 

                        
 

   
 
 

Figure 19. Sinogram of the 
phantom shown in Figure 15 

Figure 20. The reconstructed 
object 
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Figure 21. Phantom moved 
along positive x-axis while no 
change in y-axis 

Figure 22. Corresponding 
reconstructions 
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 Figure 23. Phantom moved 
along negative x-axis while no 
change in y-axis 

Figure 24. Phantom moved 
along positive x-axis while no 
change in y-axis 
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Figure 25. Phantom moved 
along positive y-axis while no 
change in x-axis 

Figure 26. Corresponding 
reconstructions 
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Figure 27. Phantom moved 
along negative y-axis while no 
change in x-axis 

Figure 28. Corresponding 
reconstructions 
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Figure 29. Phantom moved 
along the diagonal of the 
fourth quadrant of the 
Cartesian system 

Figure 30. Corresponding 
reconstructions 



 54 

The following phantom (figure 26) was used to find the effect of nearby objects to the 
original square in the binary phantom. 
 
 
 

                      
  
 
 
 

 
 

The reconstructed image is shown in Figure 33.  
 
 
 

 
 
 
 
 
 
 
 

Figure 31. Objects placed 
next to the square in the 
original binary phantom 

Figure 32. Corresponding 
sinogram 

Figure 33. Reconstructed 
image of the phantom shown 
in Figure 31. 
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The following phantom (figure 34) was used to find the effect of the reconstruction 
algorithm on an asymmetrical object. 
 
 

                 
 
 
 
 
 
The following phantoms (figures 36 and 38) was used to find the effect of the 
reconstruction algorithm on the object by placing it in a random location at the top left 
quadrant of the Cartesian system. 
 
 
 
 

                       
 
 
 
 
 
 

Figure 34. Objects placed 
next to the square in the 
original binary phantom 

Figure 35. Reconstructed 
image of the phantom shown 
in Figure 34. 

Figure 36. Objects placed 
in a random location on 
the top left quadrant 
 

Figure 37.  
Reconstruction of Fig 36 
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The following graphs show the error in reconstruction as a function of position of the 
object along the x-axis, y-axis and the diagonal in the fourth quadrant of the Cartesian 
coordinate system. 
 

 

                        

 

 

 

Figure 36. Error in 
reconstruction while phantom 
moved along x-axis while no 
change in y-axis 

Figure 37. Error in 
reconstruction while phantom 
moved along y-axis while no 
change in x-axis 
 

Figure 38. Objects placed 
in a random location on 
the top left quadrant 
 

Figure 37.  
Reconstruction of Fig 38 
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For the case of half-projections along the radial direction for all angles, the reconstruction 

fails to work. Figure 39, shows the sinogram for the Shepp-Logan phantom for all angles 

with half radial projections and Figure 40 shows the corresponding reconstruction. 

 

                

Figure 38. Error in 
reconstruction while phantom 
moved along the diagonal in 
the fourth quadrant of the 
Cartesian system 
 

Figure 39. Sinogram for the 
Shepp Logan for half 
projections in the radial 
direction 
 

Figure 40. Recosntruction for 
the sinogram shown in Figure 
39 
 



 
 
 

 

                        
 

                        
 

                        
 
  
 
 
 
 
 
  
 

Figure 40. Moving point 
source around the origin 
 

Figure 41. Corresponding 
reconstructions 
 



 
 
 

 

                        
 
 

                        
 

                        
 
 
 
 



 
 
 

 

                        
 
 
 
 

                        
             
 
   
 
 
 
 
 
 

In the case of bistatic imaging, where the radial factor in the original filter was replaced 

by minor axis of the ellipse over which the object is being integrated, it can be noticed 

that the reconstruction is favorable when the object is more towards the center of the ring 

of detector pairs. When the object is being displaced from the center, the reconstruction 

Figure 42. Moving the 
phantom to understand the 
symmetry in artifacts 
 

Figure 43. Corresponding 
reconstructions 
 



 
 
 

 

worsens and only the artefacts are being reconstructed. This is evident from figures 26, 

28 and 30.  

When other squares are being added around the original object, the reconstruction still 

favors the square in the middle of the ring of detector pairs. The worsening of the 

artefacts spatially suggests that the filter (which is a log function of space) influences the 

reconstruction. 

We can notice from figures 40 and 41 that the artefacts in the reconstruction of a point 

source placed at arbitrary locations around the origin splits asymmetrically which could 

be attributed the nonlinear nature of the filter and its effect on back smearing the obtained 

data.  

To further understand the asymmetry, the binary square phantom was moved five pixels 

to left and right of the y-axis while keeping the center of the phantom around 35 pixels 

constantly below the x-axis. A slight flip shift in the intensities in the asymmetry could be 

observed between the reconstructions of the phantom on the extreme right and extreme 

left. A rotation of artefacts is observed while the phantom is moved from laft to right in a 

translational way..While the forward Radon is a linear operation, the backprojection filter 

does not have a linear property. And the approximation from the radial factor in the 

spherical Radon to the minor axis in the elliptical Radon worsens the artefacts. 

Though a reconstruction technique was attempted in Mensah48, the work fails to 

analytically backup the reconstruction formula. The paper mentions classical Radon 

backprojection which cannot be applied to elliptical Radon because a Fourier slice 



 
 
 

 

theorem does not exist for elliptical Radon transformed projections. Moreover, the 

reconstruction techniques mentioned in the paper fails to satisfy the special cases of 

ellipse namely, the line and the circle. When the two foci move away to infinity an ellipse 

become a line and the corresponding Radon becomes the classical Radon. But the 

parameterization of the lines in the classical Radon are in a different direction as 

compared to this special case of ellipse. A classical reconstruction would not work in this 

scenario. In the case when the two foci come together, the ellipse becomes a circle and 

the filter used in this paper does not match the analytically derived filter in Finch47. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 

 

CHAPTER V 
 
 

CONCLUSION AND FUTURE WORK 

 

In the most common scenario Transrectal Ultrasound is performed using an endorectal 

probe containing linear arrays50. The primary contrast agent in the conventional imaging 

is the acoustic impedance mismatch. Acoustic impedance depends on the velocity and 

density and hence the tissue boundaries where these properties change will produce 

image contrast. Scatterers smaller than the wavelength can produce speckles in the 

ultrasound image. 

 Unfortunately, intracapsular prostate cancer is difficult to detect with standard 2D 

ultrasound. First, the prostate is a much more homogeneous tissue than the breast, and 

hence the contrast is limited. Furthermore, prostate cancer has a wide variation in 

appearance that overlaps with the appearance of other benign pathologies and hence 

conventional 2D ultrasound has not been shown to provide any additional sensitivity 

compared to digital rectal exam (DRE). 

Since the progression of prostate cancer is an inherently 3D process, imaging the prostate 

in 3D may be useful for a radiologist. 3D TRUS is one way of imaging 3D prostate but 

still will suffer from contrast issues. Contrast-enhanced prostate Sonography using 

microbubbles has shown potential for prostate cancer detection and diagnosis51.Although 



 
 
 

 

the prostate is not as well-vascularized as the breast, there is sufficient capacity to even 

perform dynamic wash in/out studies using commercial microbubbles. 

There also been some research work on translating transurethral ultrasound (TUUS) from 

therapeutic modality52 to an imaging modality53. The image formation methods are 

different between TUUS and TRUS, novel methods can be invented combining these 

two. 

In applications of breast imaging, photoacoustic and thermoacoustic tomography have 

been successful and powerful. Both these modalities merge a non-ionizing, high 

contrast/poor-resolution with low contrast/high resolution ultrasound to produce high 

quality images. However, there are technical obstacles in implementing these techniques 

in 3-D  

In the pulse-echo method the axial resolution is inversely related to the ultrasound 

frequency For example to detect a 150m sized breast microcalcification, frequencies 

greater than 10 MHz must be used. Higher the frequency, more they are attenuated in the 

body by tissues. In applications like breast imaging, reflection and transmission 

tomographic techniques are geometrically well-suited. Reflection tomography could be 

corrected for diffraction though it suffers the resolution limits like the pulse-echo 

methods. In transmission tomography, the Fourier diffraction tomography principle and 

related filtered backprojection image reconstruction algorithm can be used to produce 

good quantitative images of tissue attenuation and velocity8.But they are not sensitive to 

hard scattering by some microcalifications Recent advances in inverse scattering 



 
 
 

 

techniques are applied for breast imaging. Since the breast cannot be surrounded by 

detectors, as used in photoacoustic tomography, an additional angular coverage may be 

inherent to the collected acoustic data. 

 

In time-domain ultrasound tomographic imaging, there exist several quantitative image 

reconstruction techniques. But there are limitations with FBP based techniques that 

reconstruct the object from integral transformed projections. One of the limitations is that 

all of the filtered back projection algorithms that currently exist work only if the compact 

of the image space is well-defined. This means that the image space is zero outside a 

fixed domain. This results in severe artefacts when we try and reconstruct objects that are 

placed exterior to the ring of detectors as shown in Figure 14. Even the reconstruction 

techniques suggested in47 result in high smoothing of the object as is apparent from 

Figure 9 due to the log based radial filter. An additional limitation with the Radon 

transformed image reconstruction is that it works only when the medium is insonified by 

an impulse (which means infinite bandwidth). This might result in additional artefacts 

while reconstructing real data.  

For the case of half-view data acquisition, that is, data obtained by detectors placed on a 

semi-circular arc around the object, the algorithm reconstructs surfaces that are touched 

tangentially by the circles over which they are integrated. This is evident from figure 15. 

It can be noticed that the sides of the squares disappear in the reconstruction. A 

mathematical discussion for this case can be found in49. 



 
 
 

 

As part of the future work, as a mathematical pursuit, an analytical formula to reconstruct 

elliptical Radon transformed data can be approached. In a special case of the elliptical 

Radon, a parabolic Radon can be obtained by moving one of the detectors to infinity, that 

is to say, keeping one of the foci of the ellipse constant and moving the other to infinity. 

An analytical formula for reconstruction for this case is currently not available in 

literature.  

From an engineering perspective, reconstruction from limited number of angular 

projections can be approached. This will translate to lesser number of detectors in 

practice. Moreover, all the reconstruction algorithms assume that the speed of sound is 

constant. A more realistic model can be approached with varying speed of sound in an 

heterogeneous medium. With an integral type modeling, this will lead to a Radon 

transform in a different surface. It may be called the „noisy‟ Radon. An adaptive filter to 

backproject this kind of data can also be approached. 

 

 

 

 

 

 

 

 



 
 
 

 

APPENDIX A 

 

Matlab Code for forward and backprojection of Spherical Radon 

 

%Sradon.m need to be run with integrate1.m 

%I would like to thank Marcus Haltmeier (email: 

markus.haltmeier@uibk.ac.at) for sharing a partial pseudo-code and 

%helping me understand the paper better 

 

fun=phantom(101); %Insert your phantom here 
radius=3; 
diameter=2*radius; 
angles=100; 
radial=100; 
sinogram=zeros(angles,radial+1); 
angle_inc= 2*pi / angles; 
radial_inc  = diameter/ radial; 
object=linspace(-3,3,101); 
object1 = linspace(-3,3,angles); 
fil =linspace( 0,12,201); 
fil=fil(:); 
lfil=length(fil)-1; 
dfil=fil(2)-fil(1); 
pixel=object1(2)-object1(1)  ; 
[X,Y]=meshgrid(object,object);  
FINAL = zeros(101); 
nfil=linspace(0,lfil-1,lfil)'; 
a=zeros(lfil+1,lfil); 
b=zeros(lfil+1,lfil); 

  

  
for i=1:lfil+1 
    filtemp=fil(i) ; 
    k =i-1; 
    g1=-log(abs((nfil+1-k)./(nfil-k)));  
    g1(i)=0; 
    g2 =-filtemp*log(abs((nfil+1-k)./(nfil-k) ) ); 
    g2(i) = 0; 
    if k>0 
        g1(i-1) = 0; 
        g2(i-1) = 0; 
    end 
    a(i,:)=g1(1:lfil); 
    b(i,:)=g2(1:lfil)-fil(1:lfil).*g1(1:lfil); 
end 



 
 
 

 

  
object  = linspace( -3, 3, 101 );  
ang = linspace( -pi, pi - 0.001, angles ); 
rad  = linspace( 0,diameter, radial+1); 
xcirc = diameter/2 * cos(ang);  
ycirc = diameter/2 * sin(ang);  

  

  
for i=1:angles 
center=[xcirc(i) ycirc(i)]; 
gram1 = integrate1( center,radius,fun,rad ); 
sinogram( i,: ) = gram1(1,:); 
end 

  
imagesc(sinogram); 
radial1=radial-1; 

  
for backp =1:angles 
    cent   = [xcirc(backp); ycirc(backp)  ]; 
    mf(1,1:101 ) = sinogram(backp,1:101 )  ;  

     
  mf(2:end-1)  = (mf(3:end) - mf(1:end-2))/(2*(radial_inc)); 
  mf = rad.*mf; 
   if(backp==10) 
        kk=mf; 
    end 
   m = [  -mf(end:-1:1) , mf(2:1:end) ];  
   m = m(1:200)*a' +((m(2:201)-m(1:200) )/radial_inc)*b';        
    mf(1,1:1:101) = m(1,101:1:201); 
    dist=sqrt((X-cent(1)).^2+(Y-cent(2)).^2); 

    
    fun1=interp1(rad,mf,dist) ;  
   % 
    FINAL=FINAL+fun1; 
end 
FINAL = (3*2*pi/100)*FINAL/(2*pi*3); 
FINAL(not(FINAL<Inf))=0; 
figure(2); 
imagesc(FINAL); 

 

 

%integrate1.m 

 
function gram1 = integrate1(center,radius, fun,rad ); 

  
object = size(fun, 1 ) - 1; 
xV = linspace(-radius,radius, object+1 ); 



 
 
 

 

  
mf = zeros( size(rad) ); 

  
hh = floor( 2 * object *  pi ); 

  
summe = 0;  
for ir = 1:length(rad)  
    r0 = rad( ir );  

     
   beta= real( acos( r0 / (2*radius) ) ) ; 
    calc  = atan2( center(2) , center(1) ); 
    hh2 = floor( hh * (beta/pi) * r0/(2*radius) ) + 1; 
     angleV = linspace(calc+pi - beta, calc+pi + beta, hh2); 
    s1 = center(1) + r0*cos( angleV ); 
    s2 = center(2) + r0*sin( angleV ); 

  
    fw  = interp2( xV, xV', fun, s1, s2 ); 
    fw( not(fw < Inf) ) = 0; 
    summe = sum(fw(:)); 

     
    gram1(ir) = summe; 
end 
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6.1 INTRODUCTION

Thermoacoustic tomography (TAT) employs the well-known 
[1–4] correlation between electromagnetic (EM) absorption of 
biological tissue and its physiological and pathological proper-
ties. To employ this contrast mechanism, a biological object 
is irradiated by a brief EM pulse, and the resulting thermoa-
coustic signals from the tissue are collected by ultrasound 
transducers to map the distribution of the radiation absorption 
within the sample (e.g., Refs. [5–9]). TAT thus combines the 
good spatial resolution of ultrasound imaging with the good 
contrast in EM absorption.
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The problem we address in this chapter is of limited data 
(limited view), when transducers cannot be placed around 
the complete object. This situation is very common in TAT, 
for instance in its applications to breast imaging, where only 
a half sphere, rather than a sphere is available for placement. 
The question that arises is the theoretical and practical pos-
sibility of reconstruction from limited view data. Although, 
as we will see, mathematically rigorous uniqueness results 
exist that guarantee the theoretical possibility of recon-
struction from limited view data, the practical situation is 
somewhat different. Namely, some features of the object 
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to be imaged (which we dub “invisible”) are practically 
impossible to reconstruct, because they suffer from a man-
datory blurring. Any attempts to overcome this difficulty 
are futile, unless some prior information about the object or 
missing data is incorporated, or the very physical set up of 
the measurement is altered. On the contrary, the “visible” 
details are easy to reconstruct stably. It is thus important to 
understand these limitations due to limited data. Limited 
view problems have been studied extensively in other, more 
traditional, types of tomography, such as x-ray, SPECT, 
diffraction tomography, and reflectivity tomography (e.g., 
Refs. [10,11,13–18]). The TAT situation is similar and has 
been discussed in various ways in Refs. [19–27]. Although 
the underlying mathematical technique is rather involved, 
the final results are easy to understand and use. The goal 
of this chapter is to review these results and to provide the 
relevant references. We will not attempt to go through the 
rigorous mathematical technicalities, but rather explain the 
basic ideas. Correspondingly, the results will sometimes be 
stated, when the authors feel no danger of misuse, without 
some necessary technical conditions under which they are 
proven. References, however, will be given where the rigor-
ous details can be found.

A significant limitation of what is described in this chap-
ter is that the speed of ultrasound in the imaged tissue is 
assumed to be constant. The case of a variable speed could 
also be treated, but this would require a somewhat different 
and more complex consideration, which apparently has never 
been completely implemented.

The paper is structured as follows: In the next section, 
we state the model and briefly review the existing unique-
ness results, reconstruction formulas, and procedures for the 
full data view problem. The section that follows contains the 
description of how the limits of view influence the unique-
ness and reconstructions. It is explained how one can deter-
mine which interfaces in the object will be blurred in the 
reconstructed image due to the limited view. We also intro-
duce in this section necessary simple mathematical notions. 
Then the next section presents numerical examples (both 
from synthetic and experimental data) that illustrate the con-
cepts. All mathematical conclusions are equally applicable to 
photoacoustic tomography.

6.2  MATHEMATICAL MODEL AND
RECONSTRUCTION IN TAT

The accepted mathematical model of TAT involves quite a 
few physical constants. As it happens, their presence is irrel-
evant for understanding the concepts and using the limited 
view results. We thus present here a simplified model, where 
all constants are assumed to be equal to one. The full-blown 
models with all the complications (which do not influence the 
issue we discuss here), as well as more details and references, 
can be found in surveys [28–30] and in chapters [31,32] in 
this volume.

With this simplification, the model of TAT is described by 
the following wave equation problem:
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Here p(x,t) is the pressure at the point x and time t, vs(x) is 
the speed of the ultrasound propagation in the tissue, S is the 
observation surface where the transducers are placed, g(y,t)
is the measured data, i.e., the value of the pressure at time 
t measured at the transducer’s location y S, and f(x) is the 
object to be reconstructed. As we have already mentioned, 
the results described here apply to the case of a constant 
sound speed only. We can also assume that vs 1, thus arriv-
ing at the simpler equations
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In this (constant speed) case, the well-known Kirchhoff–
Poisson formulas (see, e.g., Refs. [33,34]) allow one to rep-
resent the solution p(x,t) in terms of the spherical means of 
the function f(x)

( )( ) ( )Rf y t f y t d y S
1

4 1

for (6.3)

Thus, knowledge of the data g(y,t) is equivalent to knowing 
the integrals of the unknown function f over all spheres cen-
tered at transducers’ locations y S. One immediately notices 
a similarity with the standard Radon transforms for x-ray 
tomography or MRI, where the integration is done over lines 
or planes rather than spheres. And indeed, most of the stan-
dard tomographic results and techniques find their analogs in 
TAT, albeit many aspects become much more involved (see, 
e.g., Refs. [28–32,35–43]). We now address the uniqueness of 
reconstruction and reconstruction procedures in TAT.

The reader can notice that in all feasible applications, func-
tion f(x) to be reconstructed does not have “infinite tails”, i.e., 
vanishes outside of a bounded domain. Moreover, in most 
practical applications, it is true that its support is completely 
surrounded by the observation surface S. In what follows, 
this will be assumed (some results and inversion formulas 
might fail unless this is satisfied [30,31]).

We first assume the knowledge of the full data g(y,t) for 
an observation surface S, which is a sphere surrounding the 
support of the image f(x). The case of limited-angle data will 
be considered in the next section.

A similar problem to the one we have just described in 3D 
can also be considered in other dimensions. For TAT, only 
dimensions 2 and 3 are relevant (the need to use a 2D prob-
lem arises, for instance, when one uses linear, rather than 
point-like, detectors [24,25]).
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6.2.1 UNIQUENESS OF RECONSTRUCTION

The first question to answer is whether the data determines 
function f uniquely, i.e., which observation surfaces S pro-
vide uniqueness of reconstruction. In 2D, this was resolved in 
Ref. [35]. There is still no complete solution in 3D (see Refs. 
[15,28–32,35,38–41] for surveys and references). However, 
from the practical point of view, there is no problem. Indeed, 
it has been known at least since Ref. [44] (see also the ref-
erences just mentioned and Ref. [45]) that if the surface S
is closed, e.g., a sphere, and if f has a bounded support (not 
necessarily surrounded by S), then there is uniqueness.*

When S is a cylinder, uniqueness also holds, and if S is a 
plane, uniqueness holds if f vanishes on one side of the plane 
(otherwise an odd function f with respect to the plane pro-
vides a counterexample). This essentially covers any feasible 
full-view TAT situation.

Now, when uniqueness is established, one wonders how to 
actually reconstruct the image f.

6.2.2 RECONSTRUCTION FORMULAS AND ALGORITHMS

Although the area had experienced a slow start, there has 
been a large variety of inversion formulas and algorithms 
developed lately (at least for the case of a constant sound 
speed that we consider here). One can find a thorough discus-
sion of inversion formulas and reconstruction algorithms in 
the surveys [31,32] in this volume, as well as in Refs. [29 32]. 
We will just say a few general words about these, since the 
details of a particular algorithm do not seem to affect the 
general conclusion that we will make later about the limited 
view problems in TAT.

Explicit inversions based on Fourier transform techniques 
have been developed in the case of a planar observation sur-
face S (see, e.g., Refs. [16,46–50]).

The most interesting case of a spherical surface S was 
first rigorously treated in Refs. [51,52], where the rotational 
invariance of the problem was used to expand the data and 
the image into Fourier series with respect to the angle. This 
resulted in explicitly solvable Abel-type integral equations 
for each Fourier coefficient (a la A. Cormack’s work on x-ray 
CT). While the 2D formulas of Ref. [51] involved numeri-
cal instabilities, this was fixed in the 3D reconstructions of 
Ref. [52].

For quite some time, there had been no explicit filtered 
backprojection-type formula obtained for any closed obser-
vation surface S, and even the possibility of such a formula 
was questioned. Finally, in Ref. [38], such formulas were 
found for all odd dimensions when S is a sphere, and then 
extended to even dimensions in Ref. [53]. A different 3D 
backprojection-type formula was obtained in Ref. [54]. A 
backprojection formula for arbitrary dimension was found in 
Ref. [55], which in 3D coincided with the one in Ref. [54]. It is 
interesting to note that the series of formulas in Refs. [38,53] 

* For the uniqueness result to hold, it is not necessary to require that f
vanishes at infinity, sufficiently fast decay at infinity also suffices [45]. 
However, in practical situations, f does vanish at large distances.

and in Refs. [54,55] are not equivalent on nonperfect data, 
albeit they seem to work numerically equally well [30,31]. A 
different derivation of formulas in Ref. [38] has recently been 
proposed [56]. No closed form analytic formulas are known 
for surfaces S that are not spheres, cylinders, or planes.

An interesting series expansion inversion procedure that 
theoretically works for any closed observation surface S was 
suggested in Ref. [57]. The expansion of the image f(x) into 
the eigenfunctions of the Laplace operator  inside S with 
zero Dirichlet conditions on S is obtained in terms of the cor-
responding expansion of the measured data. It was shown in 
Ref. [57] that a cubic surface used as S rather than a sphere 
works much better, leading to very fast, accurate, and effi-
cient reconstructions. This series expansion procedure was 
generalized to variable sound speeds in Ref. [43], albeit it is 
doubtful that this can lead to efficient computations.

Although having analytic inversion formulas always helps 
in tomography, it is also known that reconstructions can often 
be efficiently done without having explicit formulas, by either 
algebraic techniques, or their combination with analytic pre-
conditioning. This is true in TAT as well. Namely, it is not 
hard to write a good approximate inversion operator (tech-
nically called a parametrics) that gives a sufficiently good 
approximate reconstruction and preserves the locations and 
strengths of all singularities of f (e.g., sharp boundaries). Then 
one can bootstrap the quality of reconstruction by a standard 
iterative numerical procedure (e.g., Refs. [23,58,59]).

Another option is the so-called time reversal. Here one 
solves the wave equation backward in time, starting with a 
sufficiently large time, when the signal essentially disappears. 
Then when time t 0 is reached, the image f(x) is recovered 
(e.g., Refs. [36–38,43,60,61] and references therein).

Various other discussions of inversion procedures and rel-
evant references can be found in Refs. [29–31,36,37,62–71].

6.3 LIMITED VIEW PROBLEM

We now switch to the situation of our main interest in this 
paper—limited view TAT. Suppose that S is a sphere (or 
some other closed surface) surrounding the image f, and the 
only possible locations of transducers belong to a 2D piece 

 of S. In this case, we only have the data g(y,t) collected at 
the locations y in , rather than from the whole sphere. In this 
case, we face a limited angle (limited view) problem.

6.3.1  UNIQUENESS OF RECONSTRUCTION

FROM LIMITED VIEW DATA

Let us first discuss the uniqueness of recovering the image 
from the data. The dimension count shows that one should 
use a two-dimensional piece  of S in order to expect unique-
ness. Suppose that S is an analytic surface (say, a sphere) and 

 its two-dimensional piece. It follows from the results of Ref. 
[35] that if uniqueness of recovery from the data collected on 
the whole S is known, then there is also uniqueness of recov-
ery with data collected on . For instance, since the sphere is 
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analytic and since for the whole sphere uniqueness of recon-
struction is known (see the preceding section), we conclude 
that with the data on any full-dimensional piece  of the 
sphere, no matter how tiny, solution of the TAT problem is 
unique. The same holds for a 2D piece of any closed analytic 
surface.†

Although this says that the limited view data is theoreti-
cally sufficient, anyone trying to do reconstructions faces 
problems, mostly related to blurring of some parts of the 
image. This effect is no accident and can be predicted, as 
explained in the rest of the chapter. Let us look first at how 
one can try to reconstruct the image from limited view data.

6.3.2 LIMITED VIEW RECONSTRUCTIONS

The simplest thing one can try is just to replace the missing 
data with zero values‡ (the procedure often called zero-filling 
or zero-padding) and then reconstruct the image as if the data 
were complete. In advance, one might not expect any reason-
able outcome from this, however the following observations 
appear, independently of the exact procedure involved:

1. Some (we will call them “visible”§) parts of the tis-
sue interfaces and other singularities contained in the 
true image are seen clearly and at the right locations. 
These parts do not depend upon the exact technique 
used, but do depend on the view angle available.

2. Other parts of interfaces blur away.
3. “Smooth” details of the object, i.e., exact values of 

f(x) get distorted, in some areas significantly.

In most cases in tomography, limited data problems allow no 
exact reconstruction formulas. In the rare cases when these 
do exist, this does not change the effects listed above. As we 
explain below, there is a good reason for this, and, in fact, the 
“invisible” and “visible” parts of singularities can be easily 
predicted by a simple geometric consideration. In order to do 
so, we need to introduce some technical notions from the so-
called microlocal analysis first (see, e.g., Ref. [72] for simple 
introduction and Refs. [15,18,23,35,39,73,74] for applications 
in integral geometry and tomography).

6.3.3 WAVEFRONT SETS OF FUNCTIONS

Our goal is to apply known results of integral geometry 
concerning singularity reconstruction [11,12,15,39] to TAT 
[19,23]. The exact description of these would require some 
notions of microlocal analysis, in particular the notion of a 
wavefront set of a function [72]. In tomographic problems, 
in particular in TAT, one is most interested in only one type 

† A similar result holds also in x-ray CT, where limited view data uniquely 
determine the image. This immediately follows from the projection-slice 
theorem and analyticity of the Fourier transform of a compactly sup-
ported function.

‡ It is advisable sometimes to smooth out the jump between zeros and 
actual data.

§ Another name sometimes used is “audible” [39].

of singularity: the jump of f(x) across an interface (a curve in 
2D or a surface in 3D). So, we will describe the wavefront set 
in this case first. Let f(x) be smooth except for a jump across 
a smooth surface L (in 2D case, L is a curve), then the wave-
front set WF( f) of f(x) consists of pairs (x, ), where point x
belongs to L and 0 is a nonzero vector normal to L at x, as 
shown in Figure 6.1.

Before introducing the wavefront set in the general case, let 
us recall that smoothness is reflected as decay in the Fourier 
domain. Indeed, if f(x) is smooth and has compact support (or 
decays sufficiently fast with its derivatives), then its Fourier 
transform f ( )  decays faster than any power of | | in all 
directions of the -space. If we are interested in detecting 
the smoothness of f only locally, near a point x0, we cut other 
parts off by multiplying f by a smooth function  that is non-
zero only near x0. Then, again, the Fourier transform f ( )
of the product decays faster than any power of | | in all direc-
tions of the -space. Well, what does it mean now that f is not 
smooth near x0? This means that f ( ) will not be decaying, 
unless  vanishes at x0, which we will prohibit. However, it 
might still decay in some directions. This now leads to the 
general definition (e.g., Refs. [39,72]) of the wavefront set, 
which picks up for each point x0 the bad directions 0 only. It 
thus consists of pairs (x, 0), where 0 must be a nonzero vec-
tor (in order to determine a direction). It is easier to describe 
which pairs (x0, 0) (where 0 0) do not belong to the wave-
front set WF( f) of a function f. Namely, this happens if there 
is a neighborhood u of x0 and a conic neighborhood

V 0 0

0

such that

of the direction 0, such that for any smooth function  sup-
ported inside u, the Fourier transform f ( ) of the function 
f decays to zero faster than any power of | | when 

in V . The role of the function  is to eliminate the possi-
ble bad behavior of f away from x0 and keep only the local 

L

x

FIGURE 6.1 If f(x) is smooth, except a jump singularity across L,
then its wavefront set WF( f) consists of pairs (x, ), where x belongs 
to the jump interface L, and  is a nonzero vector normal to L, at 
x. (Reproduced from Xu, Y., L.V. Wang, G. Ambartsoumian, and  
P. Kuchment, Med. Phys. 31(4):724–33, 2005. With permission.)

© 2009 by Taylor & Francis Group, LLC



Limited View Thermoacoustic Tomography 65

information about properties of f at x0. Thus, the wavefront 
set of f carries the information about singularities of f, which 
is localized both in spatial variable x and frequency variable 
 (the word used is “microlocalization”, and thus “microlocal 

analysis”). Projecting the wavefront set onto the space com-
ponent x (by forgetting the frequency variable ), one obtains 
the so-called singular support of f, i.e., the set of all singulari-
ties of f—points near which f is not smooth. For instance, it 
is easy to check that the wavefront set of the delta function 
consists of (0, ) for any 0.

6.3.4  “VISIBLE” SINGULARITIES AND THEIR

RECONSTRUCTION

The general idea of the microlocal approach to limited view 
problems is the following [11] (see a somewhat different, more 
limited approach in Ref. [12]). One tries to determine which 
wavefront set elements (x, ) of the object f lead to singulari-
ties, i.e., wavefront set elements in the measured data g. This 
can be done by the technique of the so-called Fourier integral 
operators (FIOs) [73,74], which is beyond the scope of the 
current consideration. If such a pair (x, ) does lead to a singu-
larity in g, it is called “visible” or “audible”. Such wavefront 
set points of the object can be stably reconstructed from the 
data g, and thus the singularity will show up in the recon-
struction. If a particular wavefront set point does not influ-
ence the singularities of the data g (i.e., it is smoothed out), it 
becomes “invisible” and thus will be blurred away. This blur-
ring effect is intrinsic to the problem and cannot be overcome 
by changing analytic or numerical techniques, unless some 
extra information is incorporated into the problem.

This concept is not hard to understand. Imagine, for 
instance, that the operator that maps the unknown f into 
the data set g, turns all images even the ones with singu-
larities, into smooth functions g. In the Fourier domain, this 
can be interpreted as an operation that turns slowly decaying 
Fourier transforms into the ones that decay faster than any 
power. For instance, one can imagine that this is done by 
applying a filter that decays extremely fast, and essentially 
acts as a low-pass filter. Trying to invert the procedure and 
reconstruct the object f from the data g, one runs into trouble, 
since the required filters will grow faster than any power 
(often exponentially). This clearly indicates impossibility 
of stable reconstruction of high-frequency components, and 
thus of any sharp details.¶ A “microlocal” extension of this 
consideration shows that if some part of the wavefront set 
(i.e., a singularity) of the image f does not contribute to the 
wavefront set of the data, then this singularity cannot be sta-
bly recovered from the data.

It is thus important to be able to understand in advance 
which wavefront set elements (x, ) of the (unknown) f would 
lead to some wavefront set elements in g. This would deter-
mine which singularities are “visible” from the data g.

¶ One faces such instabilities, for instance, trying to solve the heat equation 
back in time, or dealing with electrical impedance imaging or optical 
tomography.

Fortunately, there is a very simple answer to this question 
in the cases of x-ray tomography, SPECT, TAT, and some 
other imaging methods [11,15,18,19,39] (while its justification 
is very nontrivial). We will describe it following Ref. [19] (see 
also Ref. [23]), as applied to TAT:

The “visibility” condition
An element (x, ) of the wavefront set of f cannot be recov-
ered looking at the singularities of the spherical integrals 
data, unless there is a detector location and a sphere cen-
tered at this location that passes through the point x and is 
normal to  at this point. In other words, in TAT one can see 
without blurring only those parts of the interfaces that can 
be touched tangentially by spheres centered at detector posi-
tions. This means that in order to recover stably (i.e., without 
blurring) the interface L, one needs to have for each point of 
L a detector located along the normal line to L at this point. 
If for some part of L, the normals do not pass through the 
detectors, this part will be “invisible” and will be mandato-
rily blurred away.

Remark 1 This principle does not depend upon a particular 
reconstruction method. So, a bad method can increase blur-
ring, but even the best methods cannot recover sharply the 
“invisible” interfaces. This is why in this text we do not go 
into any details of reconstructions. Certainly, incorporation 
of additional a priori information about the image (e.g., that 
it consists of a few simple “blocks”) could potentially lead 
to improvements.

The visibility condition described above is not hard to 
understand. Indeed, assume for simplicity that the integration 
that produces the measured data is done along planes rather 
than spheres, and that the interface is also planar. Then, if 
one integrates along a stack of parallel planes x s that is 
not parallel to the interface L (i.e., the normal vector  to the 
plane of integration is not normal to L), the singularity of f
along the interface is smoothed out, and the resulting value 
depends on s smoothly. Only if one has at one’s disposal a set 
of planes parallel to the interface (i.e.,  is normal to L), then 
the integration of f will result in a singularity with respect to 
s. This indicates that invisible parts of the wavefront set do 
not show up as singularities in the measured data, and thus 
cannot be stably reconstructed. This hand-waving explana-
tion can be made precise, with substantial technical effort.

Notice that if at some location x, any line passing through 
x crosses a detector position, then for any image, we expect 
its details near x to be reconstructed sharply. This leads us to 
the following notion:

Definition 2 Suppose that detectors can be located along a 
2D (1D in the planar case) piece  of the observation surface 
S only. The detectable region consists of such points x inside 
S that every line passing through x crosses .

According to the visibility condition, any object supported 
inside the detectable region will be sharply reconstructed, 
while the objects reaching outside the detectable region will 
have some parts of their interfaces blurred away.
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Figure 6.2 illustrates the detectable regions. Figure 6.3 
shows the expected behavior of the reconstructed interfaces 
of simple square and disk phantoms with limited view data.

Results of reconstructions from synthetic and experi-
mental data, which confirm this conclusion, are shown in 
Section 6.4.

6.3.5 HALF-SPHERE PROBLEM

A particular case of interest, which has attracted the attention 
of several researchers, is when the detectors can be placed 
along half of the observation sphere S, and thus the detec-
tion region is the corresponding half-ball. It is assumed that 
the object is located inside the detection region. Then, the 
principle discussed in the previous section predicts that all 
singularities of the object are “visible” and thus reconstruc-
tions should be sharp. If one attempts to zero-fill the data 
from the other half sphere and use any of the standard recon-
struction methods, the interfaces truly remain sharp, but the 
intensities deteriorate towards the missing equator. Having an 
exact reconstruction formula for half-sphere data would fix 
this problem, but such a formula has not been found so far.**

So, different partial remedies for this ailment have been sug-

** In SPECT, a similar problem waited quite a long time before its satisfac-
tory resolution [75,76].

gested: better approximate inverses, corrective coefficients, 
numerical minimization, using range conditions for recover-
ing the missing data, etc. (e.g., Refs. [22,26,27]). A very recent 
work [77] shows great promise for the final resolution, albeit 
at the moment of writing this chapter, not all necessary details 
have been filled in.

6.3.6  LOCAL TOMOGRAPHY AND

SINGULARITY SHARPENING

We would like to mention briefly the principle of the so-
called local tomography [18,78 80]. In this method, before 
backprojection, an additional growing filter in the frequency 
domain is applied in order to sharpen singularities. The result-
ing reconstruction has incorrect numerical values of f(x), but 
significantly emphasized interfaces and other singularities, 
which, for instance, can be useful when small blood vessels 
or region of interest tomography are of interest. Local tomog-
raphy applies to TAT as well [19,23]. In the case of limited 
view data, it also recovers the “visible” parts of the interfaces 
only. Some of the reconstructions shown in the next section 
include their local tomography counterparts.

It is interesting to notice (see more about this in the fol-
lowing section), that transducers’ responses often act as that 
extra filter needed for local tomography, and thus boundaries 
are emphasized without any extra effort.

(a) (b) (c)

FIGURE 6.2 (a) Illustration of the “detectable regions” (shaded areas) of circular Radon transformation, when the detector moves along a 
single arc (solid) of a circle. (b) Two arcs. (c) Three arcs. (Reproduced from Xu, Y., L.V. Wang, G. Ambartsoumian, and P. Kuchment, Med. 
Phys. 31(4):724–33, 2005. With permission.)

(a) (b) (c)

A B

FIGURE 6.3 (a) “Visible” (solid line) and “invisible” (dashed) boundaries of a square object, and the “detectable regions” (shaded areas) 
when the detector moves along an arc (solid). (b) Same as (a) for a disk phantom. (c) Same as (a) except that the detector moves along the line 
segment AB and the objects are a square and a disk. The “visible” boundaries are expected to be recoverable stably, while the “invisible” 
boundaries should be blurred away. (Reproduced from Xu, Y., L.V. Wang, G. Ambartsoumian, and P. Kuchment, Med. Phys. 31(4):724–33, 
2005. With permission.)
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6.4  NUMERICAL AND EXPERIMENTAL 
VERIFICATION

In this section, we will illustrate our theoretical analysis and 
conclusions with reconstructions [23] from both synthetic and 
experimental (i.e., collected from a physical phantom) TAT 
data. We do not mention details of specific reconstruction 
methods used because, as explained earlier, the “visibility–
invisibility” effect does not depend on the method used.

6.4.1  RECONSTRUCTION FROM SYNTHETIC LIMITED

VIEW THERMOACOUSTIC TOMOGRAPHY DATA

A numerical phantom that contains four sharp and one soft 
inclusion is shown in Figure 6.4. Among the sharp inclusions, 
we have one large and two small squares and one disk. The 
object value is set to be 0.5 within the largest square, unity 
within other sharp inclusions, and zero elsewhere. Inside the 
“soft” circular inclusion, this value drops linearly with the 
radius from unity at the center to zero at the interface, in order 
to simulate a gradual interface. The imaged field of 154 mm by 
154 mm is mapped with a 128 128 mesh. The detection circle 
has a radius of 133 mm and is centered at the center of the pic-
ture. We scan 200 steps in all the simulations. The gray scale 
and the scale bar of the images are shown below the images in 
Figure 6.5. The top row of reconstructions employs the local 
tomography formula that emphasizes the boundaries. The next 
one uses the approximate filtered-backprojection (FBP) for-
mula in Ref. [23], and the lowest one shows the improvements 

achieved by running the algebraic reconstruction method 
(TCG), starting with the FBP as an initial guess [23].

The left column uses only the data collected from the 
/2 detection arc in the first quadrant. None of the phantom 

inclusions fit into the “detectable region”. One can see that 
all parts of the inclusion boundaries the normals to which do 
not intersect the detection arc are blurred (even in the local 
tomography reconstruction). Other parts of the boundaries 
are sharp. This is in perfect agreement with our theoretical 
prediction. The soft inclusion is not significantly affected by 
the artifacts.

The middle column employs the data collected from the 
detection arc of approximately 217 degrees (the angle  in 
Figure 6.4), whose chord coincides with the bottom side 
of the large square inclusion. In this case, all inclusions 
are in the “detectable region”, and hence all the boundar-
ies are reconstructed sharply. The third column represents 
the full data reconstruction. Notice that the quality of the 
final reconstructions in the last two columns is the same. 
Figure 6.6a and b show the reconstructed image f(x) along 
the dashed-dotted line in Figure 6.4, using the FBP (Figures 
6.5d through f) and TCG reconstructions (Figure 6.5g  
through i), respectively. The exact value is also shown for 
comparison. It can be found in Figure 6.6a that the results 
of FBP are in good agreement with the real value for the 
case of 217-degree and 360-degree detection, where all 
objects are in the “detectable region”. Iteration improves the 
results further, as shown in Figure 6.6b. Even for the case 
of a 90-degree detection curve, the profile of the objects is 
reconstructed. Comparing Figure 6.6a and b, one finds that 
the significant overshoot and undershoot in FBP can be con-
siderably reduced by TCG iterations (we remind the reader 
that FBP is only an approximation rather than the implemen-
tation of an exact formula).

Figure 6.7 shows the relative error of each reconstruc-
tion as a function of the scanned angular range with respect 
to the center of the scan. We study the mean reconstruction 
values in the hard sphere, the central square, and the back-
ground. The errors of reconstruction are normalized to the 
corresponding real values in the cases of the hard sphere 
and the central square, and to the real value of the hard 
sphere in the case of the background (because its real value 
is zero). When the scanned angular range is less than ,
the errors decrease sharply with increasing scanned angu-
lar range. By contrast, when the scanned angular range is 
larger than , the errors change much more slowly as the 
scanned angular range increases. The results agree with 
our theoretical conclusions. However, there are some fluc-
tuations added to the trends of the curves. By comparing 
the three curves in Figure 6.7, we find that these fluctua-
tions depend strongly on the location of the object with 
respect to the detection curve. More extensive study is 
needed to understand these fluctuations. There are some 
residual errors even in the full-view detection in Figure 6.7. 
This is because we used an approximate backprojection 
algorithm, rather than an exact inversion (which was not 
available at that time).

0°°

90°

FIGURE 6.4 Diagram of inclusions in TAT (used in Figure 6.5). 
The value of the image f(x) is set to be 0.5 in the largest square, and 
unity within other sharp inclusions, and zero elsewhere. Inside the 
“soft” circular inclusion, this value drops linearly with the radius 
from unity at the center to zero at the interface. (Reproduced from 
Xu, Y., L.V. Wang, G. Ambartsoumian, and P. Kuchment, Med. 
Phys. 31(4):724–33, 2005. With permission.)
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6.4.2  RECONSTRUCTION FROM EXPERIMENTAL LIMITED

VIEW THERMOACOUSTIC TOMOGRAPHY DATA

The experimental setup is described in [23,67] and will 
not be repeated here. The sample and the polar coordinate 
system describing the scanning orbit are shown in Figure 
6.8a. The sample consists of a muscle cylinder of 4 mm in 
diameter and 5 mm in length, embedded in a chunk of pork 

fat of 1.2 cm in radius, rf. There is a 10-mm fat layer below 
the muscle and another 7-mm one above it. An EM pulse 
is delivered to the sample from below (i.e., from behind 
the picture plane). With a scanning radius of rd 7.1 cm, 
thermoacoustic data are collected around the sample over 
a 2  angular span with 161 steps. The EM pulse profile 
and the impulse response function of the ultrasonic trans-
ducer impose a filter on the thermoacoustic signals. We 

(a) (b) (c)

(f)(e)(d)

(g) (h) (i)

20 mm

FIGURE 6.5 Images reconstructed from simulated TAT data corresponding to the phantom in Figure 6.4. The three columns correspond 
from left to right to detection angles of 90 degrees (from 0º to 90º), 217 degrees (from –19º to 198º as shown by the angle  in Figure 6.4), 
and 360 degrees, respectively. The three rows correspond from top to bottom to the local tomographic reconstruction, FBP, and FBP with 
the consecutive TCG, respectively. The values (minimum, maximum) of the gray scale for (a–i) are (–0.8081, 1.0000), (–0.8302, 1.0000), 
(–0.7515, 1.0000), (–2.0745, 1.7899), (–0.6385, 1.0723), (–0.1030, 1.0349), (–0.9284, 1.2859), (–0.0326, 1.0030), and (–0.0149, 1.0021), 
respectively. The maxima of the local reconstructions are normalized to unity. (Reproduced from Xu, Y., L.V. Wang, G. Ambartsoumian, 
and P. Kuchment, Med. Phys. 31(4):724–33, 2005. With permission.)
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attempted to correct this effect using deconvolution, but 
found that the resulting images were distorted, due to the 
lack of precise knowledge of the filter. Therefore, we do 
not use deconvolution in the reconstruction. This leads, 
as explained earlier, to somewhat emphasized interfaces. 
Figure 6.8b through d show the reconstructed images using 
FBP with three sets of data. In Figure 6.8b, we choose the 
data collected along a circular detection arc of 92 degrees, 
located at the top of the picture and almost symmetric with 
respect to its vertical axes. One sees that the left and right 

boundaries of the muscle cylinder and of the pork chunk 
are blurred away, since their normal lines do not touch the 
detection arc, while the rest of the boundary is sharp. The 
next figure shows the reconstructed image obtained with 
the data collected from a 202-degree arc, where the whole 
phantom fits into the detectable region. All boundaries are 
sharp now. Finally, the last figure shows the image recon-
structed with the full-view data.

Notice that although no local reconstruction algorithms 
are applied, the boundaries are somewhat emphasized. The 
reason for this is the presence in the data of the impulse 
response function of the ultrasonic transducer, which has an 
effect similar to the application of an additional derivative 
with respect to the radius of the circle of integration. The 
presence of such a derivative emphasizes high frequencies 
and makes the reconstruction similar to a version of a local 
tomography algorithm.

6.4.3 DISCUSSION ON EXPERIMENTAL RESULTS

As mentioned earlier, although circular scanning is used in 
both our numerical and experimental studies, our conclusions 
can be applied to other configurations as well. In TAT with a 
planar configuration [62,64–66], detections are implemented 
on a part of a line or a plane where the scanning view is quite 
limited; consequently, artifacts and interface blurring appear 
in the reconstructed images. In fact, in planar and linear 
scanning geometries, one can never have an object immersed 
entirely into the “detectable region” because the normal lines 
to any interfaces that are orthogonal to the detection plane 
(line) never pass through a detector. As a consequence, those 
parts of the interfaces will be blurred in any kind of recon-
struction. For a sufficiently large view, these parts will be 
small, but theoretically will never disappear. For example, 2D 
planar detection is utilized to image artificial blood vessels 
[64]; the scanning view is about 2.18 steradians. Therefore, it 
is not surprising that only the interfaces more-or-less parallel 
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FIGURE 6.6 (a) The graphs of FBP reconstructions shown in Figure 6.5d through f, and the corresponding exact value along the dashed-
dotted line in Figure 6.4. (b) The graphs corresponding to TCG reconstructions, Figure 6.5d through f, along the same line as in (a). 
(Reproduced from Xu, Y., L.V. Wang, G. Ambartsoumian, and P. Kuchment, Med. Phys. 31(4):724–33, 2005. With permission.)

FIGURE 6.7 Dependence of the relative errors of the mean values 
in the hard sphere (circle markers), the central square (square mark-
ers), and the background (asterisks) on the scanned angular range. 
(Reproduced from Xu, Y., L.V. Wang, G. Ambartsoumian, and P. 
Kuchment, Med. Phys. 31(4):724–33, 2005. With permission.)
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to the plane of detection are well imaged. Linear scanning 
detection was used in Ref. [66] to image a 2D phantom. 
Because the view of the linear scanning in Ref. [66] is much 
larger than that of planar scanning in Ref. [64], the inter-
faces are recovered much more completely. However, due to a 
limited view, artifacts and interface blurring similar to those 
demonstrated in our numerical and experimental studies still 
appear in the images [66].

By comparing Figures 6.5 and 6.8, we observe that the 
images reconstructed from incomplete data when an object 
is in the detectable region, have comparable quality with 
those from the full-view data. Scanning a smaller range has 
the advantages of reducing the scanning time or the size of 
the acoustic transducer array. It should be pointed out that 
this advantage usually exists when both the sample and 
medium are relatively acoustically homogeneous. When 

strong wavefront distortion caused by acoustic heterogene-
ities occurs, it might be beneficial to collect signals from all 
directions.

6.5  ADDITIONAL REMARKS AND  
CONCLUSIONS

As mentioned before, one may incorporate some additional 
information about the image, or change the physical set-up 
of the problem to stabilize the inverse problem and make all 
or some formerly invisible interfaces visible. Recently, it was 
shown [70] that taking into account some a priori knowledge 
about the interfaces leads to reconstruction of previously 
invisible parts. In another direction, acoustic reflectors were 
proposed as a means of reflecting the acoustic waves, which 
would otherwise not be measured, back onto the sensor. It was 

90°

0°180°

CM

Fat

Muscle

5 mm

Minimum Maximum

Energy deposition

(a) (b)

(d)(c)

FIGURE 6.8 (a) Photograph of the experimental sample. (b–d) TAT images reconstructed using detection arcs of 92 degrees (from 50º to 
142º in (a)), 202 degrees (from –18º to 184º), and 360 degrees, respectively. The blurred parts of the boundaries in (b) due to the limited view 
agree with the theoretical predictions. In (c) all the boundaries are resolved, since the object fits into the “detectable region”. (Reproduced 
from Xu, Y., L.V. Wang, G. Ambartsoumian, and P. Kuchment, Med. Phys. 31(4):724–33, 2005. With permission.)
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shown in that case an existing FFT-based image reconstruc-
tion algorithm can be used to reconstruct the image without 
the limited view-induced blurring [71,81].

The main points of this survey can be summarized as 
follows:

A geometric principle is described that allows a sim-
ple determination of which sharp parts of the object 
are expected to be blurred when reconstructed from 
limited view thermoacoustic data.
This blurring is independent of the particular recon-
struction method and cannot be overcome, unless 
some extra information about the object is known.
Numerical results using synthetic and experimental 
data are shown that support the conclusions.
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ABSTRACT

SOME PROBLEMS OF INTEGRAL GEOMETRY IN ADVANCED IMAGING

Rim Gouia, Ph.D.

The University of Texas at Arlington, 2011

Supervising Professor: Dr. Ambartsoumian

During the past decade, our society has become dependent on advanced math-

ematics for many of our daily needs. Mathematics is at the heart of the 21st century

technologies and more specifically the emerging imaging technologies from thermoa-

coustic tomography (TAT) and ultrasound computed tomography (UCT) to non-

destructive testing (NDT). All of these applications reconstruct the internal structure

of an object from external measurements without damaging the entity under inves-

tigation. The basic mathematical idea common to such reconstruction problems is

often based upon Radon integral transform.

The Radon integral transform R : f 7→ Rf puts into correspondence to a given

function f its integrals over certain subsets. In this work, we focus on the situation

when the subsets are circles. The major problems related to this transform are the

existence and uniqueness of its inversion, inversion formulas, and the range description

of the transform. When Rf is known for circles of all possible radii, there are well

developed theories addressing most of the questions mentioned above. However, many

of these questions are still open when Rf is available for only a part of all possible

radii.

The aim of my dissertation is to derive some new results about the existence

and uniqueness of the representation of a function by its circular Radon transform
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with radially partial data for both interior and exterior problems. The presented

new results open new frontiers in the field of medical imaging such as intravascular

ultrasound (IVUS) and transrectal ultrasound (TRUS).
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CHAPTER 1

INTRODUCTION

During the past decade, our society has become dependent on advanced math-

ematics for many of our daily needs. Mathematics is at the heart of the 21st century

technologies and more specifically the emerging imaging technologies from thermoa-

coustic tomography (TAT) and ultrasound computed tomography (UCT) to non-

destructive testing (NDT). All of these applications reconstruct the internal structure

of an object from external measurements without damaging the entity under inves-

tigation. Very often the basic mathematical idea common to such reconstruction

problems is based upon integral geometry.

In accordance with the terminology used by I. Gelfand and G. Shilov in [31],

integral geometry is the branch of geometrical analysis that analyzes integral trans-

forms of geometrical nature. More specifically, integral geometry is dealing with

properties of functions that can be determined by transforms integrating the function

over subsets. This type of transforms are named Radon integral transforms after the

Austrian mathematician, Johann Radon (1887-1956), who studied the transform that

integrates functions of two independent variables over all lines in the plane for pure

mathematical reasons. In 1963, the physicist Allan M. Cormack reinvented the classi-

cal Radon transform and supplanted it as the mathematical model of X-ray computed

tomography (CT) in which the internal structure of an object can be determined by

its integrals over all lines in the plane. Based upon Cormack’s work, the engineer

Godfrey Hounsfield invented the CT that revolutionized the field of medical imaging

and resulted in the 1979 Nobel Prize in Physiology and Medicine.

The success of this imaging method and the tremendous improvement in the

computing capabilities boosted the connection between integral geometry and medical

1
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imaging as well as other fields of imaging such as non-destructive testing, geophysics,

radar and sonar. Indeed, integral geometry is used in medicine to visualize internal

organs, in non-destructive testing to evaluate the thickness of objects and flaws in

materials, in geophysics to explore oil and gas, and in remote sensing to detect objects

and monitor risk areas.

In the next chapter, we give a brief survey of some of the major imaging ap-

plications that deal with reconstructing the internal structure of an object without

causing damage to it. The basic mathematical idea common to such reconstruction

problems is based upon integral transforms of Radon type. In chapter 3, some of these

transforms are defined and studied from a theoretical point of view. We first define

the classical Radon transform, then we generalize it to the spherical and the elliptical

Radon transforms, which are more relevant tools in the imaging applications that

we consider. In chapter 4, we discuss some of the main mathematical problems that

typically arise while determining a function from its Radon transforms. We start by a

quick summary of the results regarding the inversion of the classical Radon transform

in R2. We provide some of the important techniques that are used in the case of main

interest. Then we intensively study the inversion of the spherical Radon transform

in R2 and in Rn for n > 2. Once we show some of the techniques of reconstruc-

tion using complete data of the spherical Radon transform, we then concentrate, in

chapter 5, on the question of representing a function by its circular Radon transform

with partial data. We focus on the case of transforms integrating functions of two

independent variables along circles, and present a new inversion formula when the

Radon transform is known for only a part of all possible radii, for both interior and

exterior problems. Finally in chapter 6, an approximate backprojection algorithm is

developed to recover a 2D function from its integrals over a family of ellipses. We



3

also present the results of the numerical simulation where the center of the ellipses is

rotating around the origin.



CHAPTER 2

MAJOR FIELDS OF APPLICATION

There are numerous imaging applications that deal with reconstructing the in-

ternal structure of an object without causing damage to it. The basic mathematical

idea common to many of such reconstruction problems is based upon integral geom-

etry. In this chapter, we describe some of the typical applications that use integral

geometry in their mathematical models.

2.1 X-ray computed tomography

X-ray computed tomography, abbreviated to CAT or CT, consists of a tube

emitting a thin collimated beam of X-rays that penetrates the object under investiga-

tion, and of a detector, which is recording the intensity loss of the transmitted X-rays.

By rotating the source and the detector in the same plane around the patient, it is

possible to obtain a set of projections. This collected data is processed by a com-

puter to produce an image of the internal structure of the object from the external

http://www.drkellysmiles.com/NewTechnology.aspx

Figure 2.1. Principle of measurement of an X-ray computed tomography.
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measurements. Invented by the engineer Godfrey Hounsfield and the physicist Allan

Cormack in 1972, the CT revolutionized the field of medical imaging.

As X-rays travel along a line L from the X-ray source through the object to an X-

ray detector, the energy is attenuated by the material on the line L. The attenuation

coefficient f(x) at the point x is the function that quantifies the tendency of an object

to absorb X-rays. Assuming all X-rays are sent in the same plane x = (x1, x2) is a

two dimensional variable, and f(x) represents an image of a cross-sectional slice of

the body. Let I(source) and I(detector) are, respectively, denote the initial intensity of the

beam and the intensity of the beam after passing the object. So the relative intensity

loss when the X-rays traverse a distance △x is

△I/I = −f(x)△ x.

By integrating from the source to the detector, we get the following integral transform

ln

[
I(source)
I(detector)

]
=

∫
L

f(x)dx.

Since I(source) and I(detector) are measured, the line integrals of the attenuation coeffi-

cient f along each of the lines L are known and can be used to reconstruct f . It is

this mathematical model upon which CT is used in medicine as well as in industry

for internal inspection of components, flaw detection, failure analysis, and metrology.

An in-depth discussion of the X-ray tomography can be found in [23, 25, 33].

2.2 Ultrasound tomography

Ultrasound tomography is very similar to X-ray tomography. In both cases, we

are trying to reconstruct a cross-sectional image from the recorded data. However,

when using ultrasound as a form of energy to illuminate the object, the transmit-

ted signal is almost immeasurable as most of the the energy is reflected by density

contrasts. Hence, the reconstruction is done using reflected signals (Figure 2.2).
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http://www.sprawls.org/ppmi2/USPRO/

Figure 2.2. The basic ultrasound imaging process.

Object

t

r
p

Figure 2.3. The receiver coincides with the source.

The transducer placed at the edge of the body works in dual modes first as an

emitter of sound waves, and then as a receiver, registering the reflection of ultrasound

waves from the inclusions inside the body.

Assuming that (1) the pulse radiates isotropically in the form of expanding

spherical waves, (2) the speed of sound propagation c is constant, (3) the receiver

coincides with the source, and (4) the medium is weakly reflecting (here by weakly

reflecting we mean that multiple reflections are ignored), the signals registered by

a transducer at any moment of time t would be generated by inclusions lying on a
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sphere of radius r = ct/2 (Figure 2.3) centered at the transducer location. In other

words, the recorded data g(p, r) is surface integrals over spheres S(p, r) centered at

the transducer locations p and of radius r = ct/2.

g(p, r) =

∫
S(p,r)

f(x) dσ.

By moving the transducer over a hyperplane or on a hypersphere around the

object, it is possible to collect enough data to reconstruct the image of the entire

object.

One needs to notice that in the case of the omission of one of these assumptions,

the spherical integral geometry is no longer valid. For example, in a bistatic setup

where the receiver and the source are no longer collocated, the collected data g(r, s, t)

is the integrals of the image function f along ellipses with foci the source s and the

receiver r, and semi-major axis t/2 (see e.g. [39, 40]). This leads us to another

integral transform

g(r, s, t) =

∫
E(r,s,t)

f(x) dσ.

To reduce the imaging geometry to two dimensions, we consider a transducer

that generates a cylindrical wavefront instead of spherical wavefront. This can be

achieved in practice by using a transducer that focuses in the axial direction and

reduce the thickness of the lateral direction.

The most well known application of ultrasound tomography is its use in medical

imaging to produce pictures of the internal structure of the human body. Moreover,

there are a vast number of other applications including radar imaging (Figure 2.5)

and sonar (see e.g. [16, 18, 38]) for the case where the receiver coincides with the
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s

r

f(x,y)

t/2

Figure 2.4. The receiver and the source are no longer collocated.

source, and geophysics (Figure 2.6) for the case where the receiver and the source are

not collocated.

2.3 Thermoacoustic/photoacoustic tomography

Thermoacoustic tomography (TAT) and photoacoustic (PAT) tomography are

two emerging medical imaging modalities based on a physical effect originally dis-

covered by Alexander Graham Bell in 1880. These novel hybrid methods combine

the advantages of optical absorption contrast with ultrasonic spatial resolution (see

[3, 34] for a comprehensive survey on mathematical problems in TAT and PAT).

The part of the human body being imaged is exposed to a short pulse of electro-

magnetic (EM) radiation (radio-frequency (RF) waves in TAT, and lasers in PAT). A

portion of this radiation is absorbed in the body, heating up the tissue, and causing
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1994 Encyclopaedia Britannica, Inc.

Figure 2.5. Radar.

http://www.earth.northwestern.edu/people/seth/107/Seismology/seismicreflection.htm

Figure 2.6. Geophysics.

thermal expansion, which in turn generates pressure waves (an ultrasound signal)

traveling through the body. These acoustic waves are measured by multiple trans-

ducers placed along the body. Then the collected data is processed to generate an

image of the heat absorption function inside the body. The premise here is that there

exists a strong contrast in the amount of absorbed EM energy between different types

of tissues. For example cancerous cells absorb several times more energy than the

healthy ones, hence recovery of the RF absorption function inside the body can help
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RF pulse

transducer

Thermoacoustic tomography

r=ct

Figure 2.7. A sketch of TAT/PAT.

both to diagnose and to locate cancer. Figure 2.7 illustrates the process by which

TAT and PAT are generated.

Since sound waves have very weak contrast in the tissue, we can simplify the

model assuming the sound speed c to be constant in the body. Under this assumption

the signals registered by a transducer at any moment of time t would be generated by

inclusions lying on a sphere of radius r = ct centered at the transducer location. Thus

the problem of image reconstruction in TAT and PAT is equivalent to the recovery of

the RF absorption function (the image to be reconstructed) from its integrals along

spheres centered at available transducer locations. To reduce the imaging process to

two dimensions, we limit the detection to circular signals by focusing the microphone

to the plane.

In this chapter, we have concentrated on some of the imaging applications in

which integral geometry has been found useful. Although a lot of advances have

been made in this field, there are still cases (e.g. incomplete data problems) when

the desired resolution and contrast are not yet achieved. Therefore, there remains a

compelling need for the advancement of integral geometry and more specifically of
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the knowledge about integral transforms of Radon type. That is what motivates our

study in the upcoming chapters.



CHAPTER 3

SOME RADON INTEGRAL TRANSFORMS

The problem of image reconstruction in all the applications presented in the

previous chapter, is equivalent to the recovery of the unknown function f from the

collection of measured data Rf which is the set of integrals of the function f over

certain hypersurfaces. In this chapter, we present a mathematical description of the

relations between f and Rf for various choices of integration subsets. These relations

are named Radon integral transforms after the Austrian mathematician J. Radon

(1887-1956), who studied the transform that integrates functions of two and three

independent variables respectively over lines and hyperplanes. It was later generalized

to higher dimensions, and extended to broader geometries in the context of integral

geometry introduced by I. Gelfand and G. Shilov in [31].

Next, we define and study some of the generalized Radon integral transforms

from a theoretical point of view. First, we define the integral transform along the

simplest path which is the straight line, called the classical Radon transform 1. Then

we generalize it to the spherical and the elliptical Radon transforms which are more

relevant tools in advanced imaging that we consider.

3.1 Classical Radon transform

• Two dimensions

The classical Radon transform in 2D maps a function on R2 into the set of its integrals

over straight lines in the plane. Let (x, y) designate coordinates of points in the plane

and f(x, y) be an arbitrary function defined on some domain D ⊂ R2. The classical

1While this is not the topic of our research, some of the methods and approaches developed for

the study of these transforms prove to be useful for our models later.

12
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s

f(x,y)

L(s, )

y

x

p

(x,y)

t

Figure 3.1. Geometric setup of integration along the line L(s, ϕ).

Radon transform Rf of f is a function defined on the space of straight lines L in R2

by the integral of f along each such line:

Rf(L) =

∫
L

f(x, y) dl,

where dl is the arc length element along L. The lines in the plane can be parameterized

by 2 variables (s, ϕ), s.t. L(s, ϕ) denotes the line at oriented distance s from the origin

and perpendicular to the vector (cos(ϕ), sin(ϕ)) (see Figure 3.1). Any point (x, y)

along L(s, ϕ) can be parameterized by:

x(t) = s cosϕ− t sinϕ,

y(t) = s sinϕ+ t cosϕ,

where the parameter t ∈ (−∞,∞) is the signed distance measured from p to the

point (x, y) on L (see Figure 3.1). The classical Radon transform can be expressed

in these coordinates by

Rf(s, ϕ) =

∫ ∞

−∞
f(s cosϕ− t sinϕ, s sinϕ+ t cosϕ) dt.
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Alternative notation using the one-dimensional Dirac δ function is

Rf(s, ϕ) =

∫ ∞

−∞

∫ ∞

−∞
f(x, y) δ(x cosϕ+ y sinϕ− s) dx dy.

Note that Rf is an even function in the sense that

Rf(s, ϕ) = Rf(−s,−ϕ). (3.1)

• Higher dimensions

More generally, in the n-dimensional space Rn, the classical Radon transform maps

a function on Rn into the set of its integrals over hyperplanes. Points in Rn are

denoted by single letters x = (x1, x2, · · · , xn) and functions defined on Rn by f(x) =

f(x1, x2, · · · , xn). The unit sphere in Rn is denoted by Sn−1. Let H(s, ϕ) = {s ∈ R :

x · ϕ = s} be the hyperplane orthogonal to ϕ ∈ Sn−1 with oriented distance s from

the origin. Using these notations, the classical Radon transform of f is defined by

Rf(s, ϕ) =

∫
H(s,ϕ)

f(x) dx.

Alternative notation is

Rf(s, ϕ) =

∫
x·ϕ=s

f(x) dx.

We can also generalize the classical Radon transform by integrating over k-dimensional

subspaces of Rn; see, e.g. [32]. The ray transform is the most common case of this

generalization, and is obtained by integrating functions over straight lines in Rn.

Thus for n = 2, the classical Radon transform and the ray transform differ only in

the notation.

As previously explained, a simple imaging modality using the classical Radon

transform is the X-ray tomography that consists of line integrals of the attenuation

coefficient along all lines in the plane. A more precise definition of X-ray tomography

can be found in chapter 2.
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f(x,y)

p

r

Figure 3.2. Geometric setup of integration along the circle C(p, r).

3.2 Spherical Radon transform (SRT)

One can generalize the classical Radon transform to the spherical Radon trans-

form for functions defined on R2, then on Rn as follows.

• Two dimensions

As the circle is the simplest curve in the plane next to the straight line, by analogy

with the classical Radon transform, we define the circular Radon transform (CRT)

of a function to be the path integral of the function along a circle of radius r and

centered at the point p ∈ R2.

Let f(x, y) be a continuous function on R2, then the CRT can be written as

Rf(p, r) =

∫
C(p,r)

f(x, y) dl,

where dl is the arc length element on the circle C(p, r) of radius r and centered at

p ∈ R2. Alternative notation using the one-dimensional Dirac δ function is

Rf(p, r) =

∫ ∞

−∞

∫ ∞

−∞
f(x, y) δ(r −

√
x2 + y2) dx dy.
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Remark: Although a lot of problems related to these Radon integral transforms have

direct applications to mathematical models of modern technologies, some of them are

investigated for pure theoretical reasons as they raise interesting and challenging

mathematical questions.

• Extension to higher dimensions

More generally, in the n-dimensional space Rn, we define the spherical Radon trans-

form of a function to be the surface integral of the function along a hypersphere of

radius r and centered at the point p ∈ Rn. Let f(x) be a continuous function on Rn,

then the spherical Radon transform of f can be written as

Rf(p, r) =

∫
|x−p|=r

f(x) dσ,

where dσ is the area element on the sphere |x− p| = r centered at p ∈ Rn.

As mentioned before, the spherical Radon transform is commonly used in the

reconstruction procedure adopted in ultrasound tomography. Indeed, under certain

physical assumptions (1) the pulse radiates isotropically in the form of expanding

spherical waves, (2) the speed of sound propagation c is constant, and (3) the re-

ceiver coincides with the source the problem of image reconstruction in ultrasound

tomography is equivalent to the recovery of the image function f from Rf data along

spheres centered at available transducer locations. Chapter 2 provides a more detailed

description of ultrasound tomography and its imaging technique.

As mentioned before, in the case of the omission of one of these assumptions,

the collected data Rf is the integrals of the image function f along ellipses with foci

the source and the receiver locations. This leads us to the next section on the study

of the elliptical Radon transform.
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Figure 3.3. Geometric setup of integration along the ellipse E(r, s, t).

3.3 Elliptical Radon transform (ERT)

We define the elliptical Radon transform of a function to be the path integral of

the function along an ellipsoid of rotation with semi-major axis t/2 and foci r, s ∈ Rn

(see e.g. [39, 40]).

• Two dimensions

Let f(x, y) be a continuous function on R2, then the elliptical Radon transform

can be written as

Rf(r, s, t) =

∫
E(r,s,t)

f(x, y) dl,

where dl is the arc length element on the ellipse E(r, s, t). In this work, we only

consider the 2D case, and possible future work can be done in 3D case.

Through this chapter, we presented some Radon integral transforms from a

theoretical point of view and how they are related to data measured in applications.

Therefore, the inverse problem that we consider is to reconstruct the unknown image
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function f from the collection of measurements Rf . This reconstruction problem is

equivalent to that of inverting the operator R defined as follows:

R : f −→ Rf

Unknown? −→ Data.

Many mathematical problems naturally arise while studying the inversion question

such as the existence and uniqueness of the inversion, inversion formulas and al-

gorithms, the stability of these inversion algorithms, and the range of the Radon

transforms (What conditions must the data satisfy?). These problems, with the ex-

ception of the stability and range descriptions, will be discussed intensively in the

next chapter. For the detailed description and known results about stability and

range descriptions, we refer the reader to papers [4, 10, 29, 56].



CHAPTER 4

MAIN MATHEMATICAL PROBLEMS AND KNOWN RESULTS

Among the major problems that naturally arise while studying the Radon in-

tegral transforms are the existence and uniqueness of their inversions, and inversion

formulas and algorithms (e.g. [24, 42, 43]). These problems will be discussed through-

out this chapter. We start by a quick summary of the results regarding the inversion

of the classical Radon transform in R2 without providing details, as they are not our

case of main interest 1. Then we discuss in more details the inversion of the spherical

Radon transform in R2 and in Rn for n > 2.

4.1 Classical Radon transform

Despite the discovery of the inversion formula of the classical Radon transform

derived by J. Radon in his early work in 1917 for pure mathematical reasons, very

little attention was given to implementing the inversion in a practical situation prior

to the pioneering work of A. Cormack in [19] who won the Nobel Prize in Physiology

and Medicine in 1979. Since then, this field has been investigated intensively. Today,

there are well developed theories addressing the reconstruction problem. Several

different approaches exist in the literature for inverting the classical Radon transform.

The first one we introduce employs the harmonic decomposition technique used by

A. Cormack. Then, we present the Fourier slice theorem, establishing a connection

between the Fourier transform and the Radon transform. In the third section, we

explore the most popular implementation of the Fourier slice theorem called filtered

backprojection formula.

1While this is not the topic of our research, some of the methods and approaches developed for

the study of these transforms prove to be useful for our models later.

19
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Figure 4.1. Coordinates to describe the line L(s, ϕ).

4.1.1 The Cormack method

Let f(r, θ) denote an unknown function supported inside the unit disc centered

at the origin, where (r, θ) are polar coordinates measured from the center of the disc.

The classical Radon transform of f along the line L defined by the parameters

(s, ϕ) is denoted by

g(s, ϕ) = Rf(s, ϕ) =

∫
L

f(r, θ) dl. (4.1)

Equation (4.1) is an integral equation in two variables but it may be reduced to a set

of integral equations in one variable as follows. Since f(r, θ) and g(s, ϕ) are periodic

with respect to the corresponding angular variables θ and ϕ, they can be expanded

as Fourier series

f(r, θ) =
∞∑

n=−∞

fn(r) e
inθ, (4.2)

g(s, ϕ) =
∞∑

n=−∞

gn(s) e
inϕ, (4.3)
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where the Fourier coefficients fn(r) and gn(s) are computed by

fn(r) =
1

2π

∫ 2π

0

f(r, θ) e−inθdθ, (4.4)

gn(s) =
1

2π

∫ 2π

0

g(s, ϕ) e−inϕdϕ. (4.5)

The relation between gn(s) and fn(r) is given in [19] as

gn(s) = 2

∫ 1

s

fn(r) T|n|(s/r) r dr

(r2 − s2)
1
2

, (4.6)

where Tn(x) is the n-th order Tchebychev polynomial of the first kind (e.g. see

[50]). It is easy to notice that by passing to the basis of complex exponentials, A.

Cormack diagonalized the classical Radon transform, i.e. the n-th Fourier coefficient

of g depends only on n-th Fourier coefficient of f . Equation (4.6) has the solution

fn(r) = − 1

π

d

dr

∫ 1

r

gn(s) T|n|(s/r) s ds

s(s2 − r2)
1
2

. (4.7)

This formula is called Cormack’s first inversion formula. Cormack’s second inversion

formula with imposed stability properties was derived later in [20]. Using the Zernicke

polynomials (e.g. see [15]) Rn
l(r), he derived the following reconstruction formula

fn(r) =
∞∑
l=0

(n+ 2l + 1) an
l Rn

l(r),

where the an
l are the coefficients appearing in the expansion

gn(s) = 2
∞∑
l=0

an
l sin [(n+ 2l + 1) arccos(s)].

4.1.2 Fourier slice theorem

The Fourier transform and Radon transform are connected in a simple way.

In imaging, this connection is called the Fourier slice theorem or equivalently the
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projection-slice theorem. Following the same notation as in the previous section, let

us define the one-dimensional Fourier transform of Rf

R̂f(ρ, ϕ) =

∫ ∞

−∞
Rf(s, ϕ) e−2πiρs ds,

and the two-dimensional Fourier transform of f

F (u, v) =

∫ ∞

−∞

∫ ∞

−∞
f(x, y) e−2πi(xu+y v) dx dy. (4.8)

According to the Fourier slice theorem, there is a connection between the two-

dimensional Fourier transform of the function f and the one-dimensional Fourier

transform of the Rf .

Let f be an absolutely integrable function in a domain D ⊂ R2. For any real

number ρ and any angle ϕ, the Fourier slice theorem states

R̂f(ρ, ϕ) = F (ρ cosϕ, ρ sinϕ).

For an in-depth treatment of the theorem and its extension to n dimensions see [23].

4.1.3 Filtered backprojection method

Let us recall first the Fourier inversion of equation (4.8) in polar coordinates

when f is an absolutely integrable function in a domain D ⊂ R2 and F is absolutely

integrable

f(x, y) =

∫ 2π

0

∫ ∞

0

F (ρ cosϕ, ρ sinϕ) e2πi (xρ cosϕ+yρ sinϕ) ρ dρ dϕ. (4.9)

Making use of the Fourier slice theorem, the equation (4.9) and the evenness property

of Rf defined previously in the equation (3.1), we can establish the filtered backpro-

jection (FBP) formula that states

f(x, y) =

∫ π

0

∫ ∞

−∞
R̂f(ρ, ϕ) e2πiρ (x cosϕ+y sinϕ) |ρ| dρ dϕ.

The FBP formula can be understood as a two-step process:
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1. The first inner integral is a filter applied to the Radon transform Rf . The filter

represents a weighting of each projection in the frequency domain.

2. The outer integral is the backprojection of the filtered Radon transform.

To reconstruct the image at every point (x, y), the data is transformed to the fre-

quency domain using one-dimensional Fourier transform, multiplied by the filter in

the frequency domain, and then transformed back to the time domain using the one-

dimensional inverse Fourier transform. The Radon transform data are referred to as

the sinogram due to its characteristic sinusoidal shape. If the reconstruction were

done without filtering, the form of the recovered image would be blurred. So in order

to avoid artifacts and improve the quality of the reconstructed image, it is necessary

to filter the data.

The next step involves a process known as backprojection which takes the fil-

tered data and projects it back along the same lines from where the data was collected.

So to compute the function at any given point (x, y), we average the filtered projec-

tions over all lines passing through that point. This FBP approach is useful for our

discussion of the approximate inversion of the elliptical Radon transform developed

in chapter 6.

Numerous other reconstruction schemes have been developed for inverting the

Radon transform. For a survey see, e.g., [23, 25, 42]. Notice that all these inversion

formulas uniquely determine the unknown function f from its classical Radon trans-

form Rf . Hence, the uniqueness question is well known and answered. The same

question when Rf is known only on a subset of the support of f is more complicated

but well studied for the classical Radon transform (for more details, see [42]).
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4.2 Spherical Radon transform

4.2.1 Uniqueness of reconstruction

Unlike the case of the classical Radon transform, the problem addressing the

uniqueness of reconstruction is still not completely understood for the spherical Radon

transform. In this section, we first formulate the problem of uniqueness of the spher-

ical Radon transform and then present some of the recent mathematical results on

uniqueness in R2 and Rn for n > 2.

4.2.1.1 Formulation of the problem

Let f(x) be a continuous function on Rn, the spherical Radon transform can

be written as

Rf(p, r) =

∫
|x−p|=r

f(x) ds,

where ds is the surface area on the sphere |x − p| = r centered at p ∈ Rn. Without

any restrictions on the set of centers p or radii r, Rf(p, r) depends on n+1 variables

(one for the radius and n for the center’s location). It is clear that the reconstruction

of the function f(x) of n variables from Rf(p, r) is an overdetermined problem. It is

reasonable to expect that one can still uniquely recover f from Rf after reducing the

degrees of freedom of Rf by one. There are many different ways to reduce the dimen-

sions of the Rf , e.g. by considering only the data coming from spheres of a certain

fixed radius, spheres passing through a fixed point, spheres tangent to a hyperplane,

spheres with centers located on a hypersurface, etc. All of these approaches lead to

interesting mathematical problems and various research groups have done extensive

amount of work on this subject. One can find good surveys and abundant lists of

references to papers dedicated to these topics in [6, 9, 28, 30].
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Motivated by several imaging applications described in chapter 2, we restrict

the centers p to a set Γ ⊂ Rn while not imposing any conditions on the radii. So

the first question that arises is whether knowing all the values of Rf on the set Γ

uniquely determines the function f . Before addressing this problem, let us first define

the notion of injectivity sets.

Definition 1. Suppose Γ is a subset of Rn. The spherical Radon transform is injective

on Γ if for any f ∈ Cc(Rn), the condition Rf(p, r) = 0 for all r ≥ 0 and for all p ∈ Γ

implies f ≡ 0. Such subsets Γ are called sets of injectivity for the spherical Radon

transform on the class of compactly supported smooth functions.

Here Cc(Rn) denotes the space of compactly supported continuous functions on Rn.

Using this definition, we can formulate the uniqueness question as follows: Which

subsets Γ of Rn are injectivity sets of the spherical Radon transform?

4.2.1.2 Uniqueness of the circular Radon transform

The problem of describing the sets of injectivity of the circular Radon transform

has been investigated intensively due to their connection to nodal sets for eigenfunc-

tions of the Laplacian. The first work concerning non-injectivity sets was made in [37]

by V. Lin and A. Pincus who considered the problem in relation to approximation

theory. They proved that if Rf is not injective on Γ then Γ is contained in the zero

set of a harmonic polynomial.

Their results were used in [6] by M. Agranovsky and T. Quinto who completely

characterized the structure of the injectivity sets of a compactly supported function

f when Rf is known along circles of all possible radii and centered on a given set.

We will state their results but refer the reader to [6] for further details. Let us first

introduce the following definition.
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Figure 4.2. Lk = {te iπk
N | −∞ < t < ∞}.

Definition 2. For any positive integer N define
∑

N to be the Coxeter system of N

lines L0, ..., LN−1

Lk = {r eiπk/n|k = 1, ..., N, r ∈ R}.∑
N are N lines passing through the origin and forming equal angle π/N .

M. Agranovsky and T. Quinto characterized the injectivity sets in R2 in terms

of Coxeter systems of lines.

Theorem 3. A subset Γ ⊂ R2 is a set of injectivity for Rf on R2 if and only if Γ is

not contained in any set of the form Q(
∑

N) ∪ Y for some N, for some rigid motion

Q in the plane and some finite set Y .

So the only subsets Γ of R2 which fail to be injectivity sets are either an empty

set, a finite set or the union of a finite set and a Coxeter system of lines
∑

N . Any

rigid motion Q preserves non-injectivity property, so Q(
∑

N) is also a non-injectivity

set.
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For example in planar geometry, the line is a non-injectivity set, i.e. we can

not recover f from the circular Radon transform Rf centered on a line. Indeed, if

f(x) is odd with respect to a line L, then if we integrate the function along circles

centered on L, the measured data Rf is zero. So clearly the line, which is a subset

of the
∑

N , is eliminated from the injectivity sets of the circular Radon transform.

However, it is well known that functions that are even with respect to a line L can

be reconstructed using the circular Radon transform centered on L (see [21]). It is

also easy to see from this statement, that the functions supported only on one side of

the line can be recovered uniquely (consider an even function which is equal to half

of the previous function in the support).

4.2.1.3 Uniqueness of the spherical Radon transform

M. Agranovsky and T. Quinto in [6] conjectured the structure of the injectivity

sets for the spherical Radon transform on the class of compactly supported function

in higher dimensions.

Conjecture 4. A set Γ ⊂ Rn is an injectivity set for the spherical Radon transform

on Cc(Rn), if and only if it is not contained in any set of the form Q(
∑

N)∪Y , where

Q is a rigid motion of Rn,
∑

N is the zero set of a non-zero homogeneous harmonic

polynomial, and Y is an algebraic subset in Rn of co-dimension at least 2.

Unfortunately, the techniques of microlocal analysis and geometric properties

of zero sets of harmonic polynomials used to prove the 2-dimensional conjecture, do

not work well in dimensions higher than two or when the function is not compactly

supported. So no proof of the conjecture is known at this time, as well as little is

known about the non-injectivity sets for functions that are not compactly supported.

A new alternative method based on a relation between the solutions of the wave

equation and the spherical Radon transform has been investigated by M. Agranovsky,
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C. Berenstein and P. Kuchment in [2]; D. Finch, S. Patch and Rakesh in [30]; and

G. Ambartsoumian and P. Kuchment in [9]. This approach has led to new results

promising possible progress to prove the n-dimensional conjecture.

We first mention the theorem in [2] of M. Agranovsky, C. Berenstein and P.

Kuchment, who used PDE tools to study the injectivity of the spherical Radon trans-

form when f ∈ Lp(Rn) and Rf is known for spheres of all possible radii centered at

every point of the boundary of some domain.

Theorem 5. The boundary Γ of any bounded domain in Rn is uniqueness set for

f ∈ Lp(Rn) iff p ≤ 2n
n−1

.

In [30], D. Finch, S. Patch and Rakesh studied this uniqueness problem for

smooth f supported in a bounded connected domain, proving the uniqueness of in-

version using Rf from spheres centered on any open subset of the boundary of D and

all possible radii D ⊂ Rn.

Theorem 6. Suppose D is a bounded open subset of Rn, n ≥ 2, with a smooth

boundary S and the closure set D̄ is strictly convex. Let Γ be any relatively open

subset of S. If f is a smooth function on Rn, supported in D̄, and Rf(p, r) = 0 for

all p ∈ Γ and all r ∈ [0, diamD] then f ≡ 0.

Another result was reported in [9] by G. Ambartsoumian and P. Kuchment who

reproved some known theorems using simpler methods and obtained further results on

the injectivity of spherical Radon transform. They discovered same strong necessary

conditions that any non-injectivity set has to satisfy, regardless of the dimensions of

the problem and without requiring finite support of f . The formulation of the full

result will require substantial space for extra definitions, so we present here just one

corollary of the main theorem, referring the reader to [9] for more details.
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Theorem 7. Let Γ be a relatively open piece of C1-hypersurface and f ∈ Cc(Rn) be

such that Rf(p, r) = 0 for all (p, r) ∈ Γ× R. If there is a point p0 ∈ Γ such that the

support of f lies strictly on one side of the tangent plane TpoΓ to Γ at p0, then f ≡ 0.

Conclusion: We have presented some of the recent mathematical results on

the uniqueness of the spherical Radon transform. In the case of compactly supported

functions, non-uniqueness sets of the circular Radon transform are completely char-

acterized. However, the uniqueness problem remains unresolved in dimensions higher

than two, and even in dimension two it is not resolved for functions that are not com-

pactly supported. Indeed, the problem is much harder to study without compactness

of support.

Remark: All three theorems above guarantee the unique inversion of Rf in

circular acquisition geometry when Rf is available for all possible radii (complete

data). But the uniqueness question when Rf is available for only a part of all possible

radii (partial data) is still an open problem. In the case of odd n, D. Finch, S. Patch

and Rakesh proved in [30] the uniqueness of inversion from data with spheres centered

at every point of the boundary and radii limited to r < (diamD)/2. The proof of

the latter result would not extend to even dimensions, since it was based on the

solution properties of certain problems related to wave equation, that hold only in

odd dimensions. In addition, M. Anastasio et al. showed in [11] that the 3D spherical

Radon data for half of all possible radii is sufficient for unique reconstruction of the

unknown function supported inside the sphere.

However, to the best of our knowledge no uniqueness result is known for even

dimensions when only partial data is available. In our paper [7], we made progress in

filling this gap in R2, by proving uniqueness for the circular Radon transform collected

along all circles of radii r < (diamD)/2. We also addressed another open problem of



30

uniqueness when the support of the unknown function extends outside of the circle.

These new results are presented in details in the next chapter.

4.2.2 Reconstruction formulas

Many explicit inversion formulas have been derived from the spherical Radon

transform centered on some simple geometries. The first studied geometry was the

hyperplane in [14, 21, 26, 44]. As it has been mentioned in the previous section,

there is no uniqueness in this case, only even functions can be reconstructed from

the spherical Radon transform. Another geometry investigated in [47, 54] was the

infinite cylinder in three-dimensional space. We do not provide details about the

reconstruction formulas in these geometries as they are not our case of interest.

In this section, we confine our discussion to the spherical geometry as it is the

most relevant acquisition to the imaging modalities described in the first chapter.

We state some of the known methods to derive explicit inversion formulas from the

spherical Radon transform centered on a sphere.

4.2.2.1 Fourier expansion methods

The first approach to tackle the problem of reconstructing a function supported

in a disc D from its spherical Radon transform along circles centered on the boundary

of D, was described by S. Norton [46] in his study of ultrasonic reflection tomography.

He derived an inversion formula based on harmonic decompositions for the measured

circular Radon transform and the 2D unknown function. This paper has been an

inspiration to many subsequent works.

Throughout this section f(r, θ) denotes a two-dimensional function supported

inside the disc D(0, R), where (r, θ) are polar coordinates measured from the center

of that disc, and R > 0 is a fixed number. The circular Radon transform Rf along a
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Figure 4.3. Circle geometry C(ρ, ϕ).

circle of radius ρ centered at a point with polar coordinates (R, ϕ) (see Figure 4.3) is

denoted by

g(ρ, ϕ) = Rf(ρ, ϕ) =

∫
C(ρ,ϕ)

f(r, θ) ds. (4.10)

Since f(r, θ) and g(s, ϕ) are periodic with respect to the corresponding angular

variables θ and ϕ, they can be expanded as Fourier series

f(r, θ) =
∞∑

n=−∞

fn(r) e
inθ, (4.11)

g(ρ, ϕ) =
∞∑

n=−∞

gn(ρ) e
inϕ, (4.12)

where the Fourier coefficients fn(r) and gn(ρ) are computed in (4.4) and (4.5).

The circular Radon transform as expressed by Eq.(4.10), can be written in

terms of Dirac delta function

g(ρ, ϕ) =

∫ ∞

0

r dr

∫ 2π

0

dθ f(r, θ) δ[ρ − (r2 +R2 − 2rR cos(ϕ− θ))1/2].
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The solution to the problem is obtained by using the property of Dirac delta function

δ(β − ρ) = ρ

∫ ∞

0

J0(βz)J0(ρz)z dz,

and deriving a relation expressing the n-th Fourier coefficient fn(r) in terms of the n-th

Fourier coefficient gn(ρ). In other words, the circular Radon transform is diagonalized

by passing to the basis of complex exponentials. This is not surprising due to the

rotation invariance of g(ρ, ϕ) in the circular geometry. As a result the problem breaks

down to the following set of one-dimensional integral equations

gn(ρ) = 2πρ

∫ ∞

0

zJ0(ρz)Jn(Rz)Hn{fn(r)}dz, (4.13)

where Hn with Hn{p(r)}z =
∫∞
0
p(r)Jn(rz)rdr is the n-th order Hankel transform

and Jn(r) are the Bessel functions of the first kind.

Using the fact that the Hankel transform is its own inverse, the coefficients fn(r) can

be recovered by the following formula

fn(r) = Hn

{
1

Jn(Rz)
H0

{
gn(ρ)

2πρ

}
z

}
r

. (4.14)

The function f(r, θ) can now be reconstructed by inserting the fn(r) into the angular

Fourier series (4.11). Notice this inversion formula requires a division of the Hankel

transform by the Bessel functions that have infinitely many zeros. In the numerical

implementation, these zeros would create instabilities. So recently, there have been

new additions in this approach in [34] to avoid this instability problem by replacing

the Bessel functions by Hankel functions H
(1)
n which does not have zeros for any real

values. Eq. (4.14) becomes

fn(r) = Hn

{
1

H
(1)
n (Rz)

∫ 2R

0

gn(ρ)H
(1)
0 (ρz)dρ

}
. (4.15)

In a similar way, S. Norton and M. Linzer in [47] derived an inversion formula for the

three-dimensional case involving a series expansion in spherical harmonics.
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All these mentioned works assume that the object of interest is entirely sur-

rounded by the circular aperture. They also require a complete knowledge of the

circular Radon transforms g(ρ, ϕ) for all the values of ρ and ϕ. In fact, to be able to

reconstruct the function f at any point (r, θ), all the values of g(ρ, ϕ) are essential.

4.2.2.2 Filtered backprojection methods

The filtered backprojection method is the most common technique in image

reconstruction that requires the inversion of the spherical Radon transform. It trans-

forms the data to the frequency domain, then filters in order to smooth out the noise,

returns to the time domain and then applies a backprojection. The inversion formulas

of filtered backprojection type do not involve series but are instead given as integrals.

The first exact formulas of this type were proven in [30] by D. Finch, S. Patch and

Rakesh in odd dimensions, and then extended recently to even dimensions in [27] by

D. Finch, M. Haltmeier and Rakesh.

Let us start with some notations to state the explicit inversion formulas. For

any integer n > 1, we assume that the unknown function f(x) is supported inside

the ball B of radius R in Rn, which is centered at the origin. We also assume that

the spherical Radon transform Rf(p, r) = g(p, r) is known for all spheres of radius r

centered at the point p on the spherical boundary SR of the ball.

g(p, r) =

∫
|p−x|=r

f(x) dσ. (4.16)

Let Ĉ∞(SR × [0,∞)) denote the class of smooth functions g(p, t) which are zero to

infinite order in t at t = 0. The operator D is defined as follows
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D : Ĉ∞(SR × [0,∞)) → Ĉ∞(SR × [0,∞))

g(p, t) →
(

1

2t

∂

∂t

)
g(p, t).

It is also convenient to define N

N : C∞
0 (B̄) → Ĉ∞(SR × [0,∞))

f(p, t) → tn−2g(p, t),

whose L2-adjoint is N ∗, which is given as follows

N ∗ : Ĉ∞(SR × [0,∞)) → C∞
0 (Rn)

F (x) → 1

wn−1

∫
|p|=R

F (p, |p− x|)
|p− x|

ds,

where wn−1 surface area of the unit sphere. Since the inversion formulas are different

for the odd and even dimensions, we state them separately.

• Inversion for odd n

Theorem 8. If n is odd and f ∈ C∞
0 (B̄) then for all x ∈ B, the following reconstruc-

tion formulas hold true

f(x) =
cn
R

△x

(
N ∗tDn−3tn−4g

)
(p , t),

where △x is the Laplacian with respect to the first variable and

cn =
(−1)(n−1)/2π

2Γ(n/2)2
.

In the case n = 3, it may be written

f(x) = − 1

2π R
△x

∫
|p|=R

1

|x− p|
g(p, |x− p|)ds.
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The proof of the three-dimensional theorem is based on an explicit computation of the

integral. However, the n-dimensional theorems were deduced by the use of spherical

harmonic expansions.

• Inversion for even n

Theorem 9. If n is even and f ∈ C∞
0 (B̄) then for all x ∈ B

f(x) =
2

cnR

∫
|p|=R

∫ 2R

0

(
log|t2 − |x− p|2|

) (
(tDn−1tn−1∂tg)(p , t)

)
dt ds,

where

cn = (−1)n−2/22 [(n− 2)/2)!]πn/2.

In the case n = 2, it may be written

f(x) =
1

2πR

∫
|p|=R

∫ 2R

0

log|t2 − |x− p|2|(∂t t ∂t g)(p , t) dt ds. (4.17)

The theorem was proved in [27] using a spherical harmonic expansion and the trace

of the solution of the wave equation in even dimensions.

Another interesting inversion formula for the spherical geometry was presented

by M. Xu and L. Wang in [54] called the universal backprojection algorithm which

offers exact reconstruction for three common geometries: planar, spherical and cylin-

drical surfaces.

In [35], L. Kunyansky presented an inversion formula for any arbitrary dimen-

sions n > 1, similar to the result of M. Xu and L. Wang in [54].

Remark: We have summarized some of the recent mathematical results for the

problem of recovering a function from the spherical Radon transform. All presented

formulas assume that a complete data set is available, i.e. the values of the spherical

Radon transforms g(p, r) are known for all the values of p and r. For example in the

equation (4.17), a complete knowledge of g(p, r) is needed to reconstruct the function

f at any point x. So how to recover f if the experimental implementation does not

provide the complete data set?
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The hypothesis that all the values of the spherical Radon transform are known,

is not always possible in imaging applications. For example, in some cases, because

some regions of the object to be imaged strongly attenuate the signal, only partial

data is available. In [12], M. Anastasio and his collaborators showed that using a

partial data in Norton’s formula [46] (r ≤ (diamD)/2) instead of the complete data

(r ≤ diamD), results in severe image artifacts. Clearly, there is a significant need for

a new reconstruction formula using partial data.

In our paper [7], we made progress in filling this gap by deriving new inversion

formulas for the circular Radon transform collected along all circles of radii r ≤ r0 for

∀ r0 < (diamD)/2. These new results are presented in details in the next chapter.



CHAPTER 5

RECONSTRUCTION FROM PARTIAL DATA OF SRT1

After we have shown some of the techniques of reconstructing f using com-

plete data of the spherical Radon transform Rf , we now concentrate on the question

of representing a function by its circular Radon transform with partial data. In

this chapter, we present our new results about the existence and uniqueness of such

representations, and a new inversion formula in the case of the circular acquisition

geometry for both interior and exterior problems. The results are not only interesting

as original mathematical discoveries, but can also be useful for many applications,

e.g. in medical imaging.

5.1 Interior problem

Throughout this section f(r, θ) denotes an unknown function supported inside

the disc of radius R, where (r, θ) are polar coordinates measured from the center of

that disc, and R > 0 is a fixed number. The circular Radon transform of f along a

circle of radius ρ centered at a point with polar coordinates (R, ϕ) (see Figure 5.1) is

denoted by

g(ρ, ϕ) = Rf(ρ, ϕ) =

∫
C(ρ,ϕ)

f(r, θ) dσ. (5.1)

The Fourier series generated by f(r, θ) and g(ρ, ϕ) with respect to corresponding

angular variables are denoted by

f(r, θ) =
∞∑

n=−∞

fn(r) e
inθ, (5.2)

g(ρ, ϕ) =
∞∑

n=−∞

gn(ρ) e
inϕ, (5.3)

where the Fourier coefficients fn(r) and gn(ρ) are computed in (4.4) and (4.5).

1 This chapter is mainly based on the paper [7].
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Figure 5.1. Geometric setup of integration along the circle C(ρ, ϕ).

We show that the function f can be uniquely recovered from Radon data with

only part of all possible radii, and then provide a reconstruction formula.

5.1.1 Uniqueness of reconstruction

Theorem 10. Let f(r, θ) be an unknown continuous function supported inside the

annulus A(ε,R) = {(r, θ) : r ∈ (ε,R), θ ∈ [0, 2π]}, where 0 < ε < R. If Rf(ρ, ϕ)

is known for ϕ ∈ [0, 2π] and ρ ∈ [0, R − ε], then f(r, θ) can be uniquely recovered in

A(ε,R).

Proof. We use an approach similar to Cormack’s inversion of the classical Radon

transform [19]. Let us rewrite formula (5.1) by considering the contribution dg to

g(ρ, ϕ) from two equal elements of arc ds of the circle C(ρ, ϕ). If the two elements

of the arc are located symmetrically with respect to the polar radius of the center of

integration circle (see Figure 5.1), then

dg =
∞∑

n=−∞

[fn(r) e
inθ + fn(r) e

in(2ϕ−θ)] ds, 0 ≤ ϕ ≤ θ ≤ 2π

so we can write
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g(ρ, ϕ) =

∫
C+(ρ,ϕ)

∞∑
n=−∞

[fn(r) e
inθ + fn(r) e

in(2ϕ−θ)] ds, 0 ≤ ϕ ≤ θ ≤ 2π,

where C+(ρ, ϕ) denotes half of the circle C(ρ, ϕ) corresponding to θ ≥ ϕ. Notice that

einθ + ein(2ϕ−θ) = 2 einϕ cos[n(θ − ϕ)] , and s = ρ arccos
(

ρ2+R2−r2

2ρR

)
, hence

ds =
rdr

R

√
1−

(
ρ2+R2−r2

2ρR

)2 .
Exchanging the order of summation and integration and using these relations we get

g(ρ, ϕ) =
∞∑

n=−∞

2 einϕ
∫ R

R−ρ

fn(r) r cos[n(θ − ϕ)]

R

√
1−

(
ρ2+R2−r2

2ρR

)2 dr.
Applying θ − ϕ = arccos

(
r2+R2−ρ2

2rR

)
, we obtain

g(ρ, ϕ) =
∞∑

n=−∞

2 einϕ
∫ R

R−ρ

fn(r) r cos
[
n arccos

(
r2+R2−ρ2

2rR

)]
R

√
1−

(
ρ2+R2−r2

2ρR

)2 dr. (5.4)

Comparing equations (5.3) and (5.4) it is easy to notice that by passing to the basis

of complex exponentials we diagonalized the circular Radon transform, i.e. the n-th

Fourier coefficient of g depends only on n-th Fourier coefficient of f . This is not

surprising, due to rotation invariance property of Rf in the circular geometry. As

a result our problem breaks down to the following set of one-dimensional integral

equations

gn(ρ) = 2

∫ R

R−ρ

fn(r) r T|n|

(
r2+R2−ρ2

2rR

)
R

√
1−

(
ρ2+R2−r2

2ρR

)2 dr, (5.5)

where Tk(x) is the k-th order Chebyshev polynomial of the first kind (e.g. see [50]).

Let us make a change of variables in the integral (5.5) by setting u = R − r. Then

equation (5.5) becomes

gn(ρ) =

∫ ρ

0

fn(R− u) 4ρ (R− u) T|n|

[
(R−u)2+R2−ρ2

2R (R−u)

]
√
ρ− u

√
(u+ ρ)(2R + ρ− u)(2R− ρ− u)

du, (5.6)
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which can be rewritten as

gn(ρ) =

∫ ρ

0

Fn(u)Kn(ρ, u)√
ρ− u

du, (5.7)

where

Fn(u) = fn(R− u), (5.8)

Kn(ρ, u) =
4ρ (R− u) T|n|

[
(R−u)2+R2−ρ2

2R(R−u)

]
√
(u+ ρ)(2R + ρ− u)(2R− ρ− u)

. (5.9)

Equation (5.7) is a Volterra integral equation of the first kind with weakly singular

kernel (e.g. see [49, 51]). Indeed, due to the assumptions on the support of f we

know, that Fn(u) ≡ 0 for u close to R or 0. Therefore from formula (5.9) and the

properties of Chebyshev polynomials, it follows that the kernel Kn(ρ, u) is continuous

in its arguments (and hence bounded) along with the first order partial derivatives

on the support of Fn. To remove the singularity in the kernel of equation(5.7), we

apply the standard method of kernel transformation [53]. Multiplying both sides of

equation (5.7) by
1√
t− ρ

dρ and integrating from 0 to t we get∫ t

0

gn(ρ)√
t− ρ

dρ =

∫ t

0

∫ ρ

0

Fn(u)Kn(ρ, u)√
ρ− u

√
t− ρ

du dρ, t > 0.

Changing the order of integration, we obtain∫ t

0

gn(ρ)√
t− ρ

dρ =

∫ t

0

Fn(u) Qn(t, u) du, (5.10)

where

Qn(t, u) =

∫ t

u

Kn(ρ, u)√
ρ− u

√
t− ρ

dρ.

The advantage of equation (5.10) in comparison to equation (5.7) is that the modified

kernelQn(t, u) is finite. Indeed, making a change of variables ρ = u+(t−u) l, 0 ≤ l ≤ 1

in the last integral, we get

Qn(t, u) =

∫ 1

0

Kn(u+ (t− u) l, u)√
l
√
1− l

dl. (5.11)
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Since Kn is bounded (say |Kn| < M), we obtain

|Qn(t, u)| < M

∫ 1

0

dl√
l
√
1− l

= Mπ.

In addition Qn(t, t) = πKn(t, t) = π

√
2t (R− t)

R
̸= 0 on the support of Fn. Now we

can easily modify equation (5.10) to a Volterra equation of second kind. Differenti-

ating equation (5.10) with respect to t we get

d

dt

∫ t

0

gn(ρ)√
t− ρ

dρ = πFn(t) Kn(t, t) +

∫ t

0

Fn(u)

[
∂

∂t

∫ t

u

Kn(ρ, u)√
ρ− u

√
t− ρ

dρ

]
du.

Dividing both sides of the last equation by πKn(t, t) and denoting

Gn(t) =
1

πKn(t, t)

d

dt

∫ t

0

gn(ρ)√
t− ρ

dρ, (5.12)

and

Ln(t, u) =
1

πKn(t, t)

∂

∂t

∫ t

u

Kn(ρ, u)√
ρ− u

√
t− ρ

dρ. (5.13)

We finally obtain a Volterra equation of second kind

Gn(t) = Fn(t) +

∫ t

0

Fn(u)Ln(t, u) du, (5.14)

where the kernel Ln(t, u) is continuous on the support of Fn. To see the continuity of

Ln one can make a change of variables in equation (5.13)

ρ = t cos2 β + u sin2 β, β ∈ [0, π/2],

and express Ln as

Ln(t, u) =
2

πKn(t, t)

∂

∂t

∫ π/2

0

Kn(t cos
2 β + u sin2 β, u) dβ.

The Volterra equation of the second kind (5.14) has a unique solution, which finishes

the proof of the theorem. 2
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Figure 5.2. The interior problem.

5.1.2 Reconstruction formulas

Using the Picard process of successive approximations (e.g. see [51]) for the

solution of Volterra equations of second kind one can immediately obtain the following

Corollary 11. An exact solution of equation (5.14) is given by the formula

Fn(t) = Gn(t) +

∫ t

0

Hn(t, u)Gn(u) du, (5.15)

where the resolvent kernel Hn(t, u) is given by the series of iterated kernels

Hn(t, u) =
∞∑
i=1

(−1)iLn,i(t, u), (5.16)

defined by

Ln,1(t, u) = Ln(t, u), (5.17)

and

Ln,i(t, u) =

∫ t

u

Ln,1(t, x) Ln,i−1(x, u) dx, i ≥ 2. (5.18)

This corollary (with notations defined in formulas (5.8), (5.9), (5.12), (5.13))

provides a new exact formula for inversion of the circular Radon transform in circular

acquisition geometry. Its advantage compared to all the other known exact inversion

formulas is the fact that only part of the Rf data is used. Notice that to reconstruct

the function f(r, θ) in any subset Ω of the disc of its support D(0, R), the inversion
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formula in Corollary 11 requires the knowledge of Rf(ρ, ϕ) only for ρ < R−R0, where

R0 = inf{|x|, x ∈ Ω}. In medical imaging reducing the radial data redundancy can

be essential for increasing the depth and reducing the time of imaging.

We can also remark that the resolvent kernel Hn(t, u) is the same for any func-

tions f and g. Hence in practice one needs to compute it with the desired accuracy

only once, and then it can be used with any data set.

In Theorem 10, we require f to be continuous, which guarantees the convergence

of the Fourier series (5.2) and (5.3) almost everywhere. If one needs to ensure con-

vergence everywhere, then some additional conditions on f (e.g. bounded variation)

should be added in all the theorems.

5.2 Exterior problem

Let us now consider an exterior problem in the circular acquisition geometry,

i.e. the Radon data is still collected along circles centered on a circle of radius R,

however the unknown function f is supported outside of the disc D(0, R).

Theorem 12. Let f(r, θ) be an unknown continuous function supported inside the

annulus A(R, 3R) = {(r, θ) : r ∈ (R, 3R), θ ∈ [0, 2π]}. If Rf(ρ, ϕ) is known for

ϕ ∈ [0, 2π] and ρ ∈ [0, R1], where 0 < R1 < 2R then f(r, θ) can be uniquely recovered

in A(R, R +R1).

Proof.

The argument of the proof of the previous theorem repeats here with minimal changes.

The condition 0 < R1 < 2R guarantees that all integration circles C(ρ, ϕ) intersect

the boundary of the disc D(0, R). Hence equation (5.4) in this case becomes

g(ρ, ϕ) =
∞∑

n=−∞

2 einϕ
∫ R+ρ

R

fn(r) r cos
[
n arccos

(
r2+R2−ρ2

2rR

)]
R

√
1−

(
ρ2+R2−r2

2ρR

)2 dr. (5.19)
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Figure 5.3. The exterior problem.

Then in a similar way, we have

gn(ρ) = 2

∫ R+ρ

R

fn(r) r T|n|

(
r2+R2−ρ2

2rR

)
R

√
1−

(
ρ2+R2−r2

2ρR

)2 dr, (5.20)

Now making a change of variables u = r −R in the last expression we get

gn(ρ) =

∫ ρ

0

fn(R + u) 4ρ (R + u) T|n|

[
(R+u)2+R2−ρ2

2R (R+u)

]
√
ρ− u

√
(u+ ρ)(2R + u+ ρ)(2R + u− ρ)

du. (5.21)

which can be rewritten as

gn(ρ) =

∫ ρ

0

Fn(u)Kn(ρ, u)√
ρ− u

du, (5.22)

where

Fn(u) = fn(R + u), (5.23)

Kn(ρ, u) =
4ρ (R + u) T|n|

[
(R+u)2+R2−ρ2

2R (R+u)

]
√

(u+ ρ)(2R + u+ ρ)(2R + u− ρ)
. (5.24)

Notice, that if one would allow ρ > 2R , thenKn(ρ, u) would become unbounded

due to the last multiplier in the denominator. This shows that 3R is an accurate upper

limit for the outer radius of the annulus in the hypothesis of the theorem.
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In analogy with the proof of the previous theorem we get

Kn(t, t) =

√
2t (R + t)

R
̸= 0.

All the other steps literally repeat the proof of Theorem 10.

5.3 Special case

It is easy to note that in some special cases one can combine the results of the

previous two theorems to reconstruct a function whose support is located both inside

and outside of the circular path C(R) of data acquisition. For example

Theorem 13. Let f be an unknown continuous function supported inside the disc

D(0, 2R). Assume also that f ≡ 0 in some neighborhood of the circle C(R), and

all its Fourier coefficients are even (or odd) with respect to C(R), i.e. fn(R + u) =

fn(R − u) (or fn(R + u) = −fn(R − u)) for ∀u ∈ [0, R]. If Rf(ρ, ϕ) is known for

ϕ ∈ [0, 2π] and ρ ∈ [0, R1], where 0 < R1 < R then f(r, θ) can be uniquely recovered

in A(R−R1, R +R1).

Proof. Combining the two previous results, we obtain a Volterra integral equation

of the first kind

gn(ρ) =

∫ ρ

0

Fn(u)Kn(ρ, u)√
ρ− u

du, (5.25)

where

Fn(u) = fn(R + u), (5.26)

and

Kn(ρ, u) = (5.27)
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4ρ√
u+ ρ

 (R + u) T|n|

[
(R+u)2+R2−ρ2

2R (R+u)

]
√
(2R + u+ ρ)(2R + u− ρ)

±
(R− u) T|n|

[
(R−u)2+R2−ρ2

2R (R−u)

]
√

(2R + ρ− u)(2R− ρ− u)

 .

The rest of the proof is carried out along the same lines as before.

It is interesting to note that the circular Radon transform in the linear acquisi-

tion geometry can be uniquely inverted on the class of continuous functions that are

even with respect to the linear path of the data acquisition. At the same time all odd

functions are mapped to zero by that transform. In our case of circular acquisition

geometry, the circular Radon transform can be uniquely inverted on classes of func-

tions with Fourier coefficients that are even with respect to the circular path of data

acquisition, as well as with the ones that are odd.

Conclusion: The purpose of this chapter has been to present our new mathe-

matical results on uniqueness and recovery of the image function from radially partial

data. To our knowledge, this is the first work to explicitly formulate such inversion

formulas in the case of the circular acquisition geometry for both interior and exterior

problems. The numerical implementation of these formulas is an important topic for

future investigation.

The results are not only interesting as original mathematical discoveries, but

can also be useful for applications, e.g. in medical imaging. While it is well estab-

lished that acoustic tomography in its various forms is a classic example of spheri-

cal Radon-based imaging inside a spherical/circular (3D/2D) aperture, the case of

imaging outside a spherical aperture is less described biomedically. Two biomedical

imaging methods can currently be modeled in the time domain through spherical

transforms of a function exterior to the aperture: transrectal ultrasound (TRUS) [48]

and intravascular ultrasound (IVUS) [17]. In both TRUS (Figure 5.5) and IVUS

(Figure 5.4), a ultrasound array arranged on the surface of a cylinder is introduced
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http://www.orau.gov/ehsd/Ivus.GIF

Figure 5.4. Intravascular ultrasound.

http://www.drjhendricks.com/BPH.htm

Figure 5.5. Transrectal ultrasound.

into the body with the goal of producing a transverse or axial image. In TRUS, the

typical application is imaging of the male prostate, while IVUS is a higher resolu-

tion ultrasound technique typically used to evaluate plaques in blood vessels. A less

natural setup where the support of the unknown function is located on both sides of

the data acquisition path may not be relevant to medical imaging, however it can be

applicable in radar and sonar imaging.



CHAPTER 6

APPROXIMATE INVERSION OF ERT: NUMERICAL RESULTS

In circular acquisition geometry, we presented several exact inversion formulas

to recover an unknown function from its circular Radon transform. That setup corre-

sponds to the mathematical model of ultrasound reflection tomography in monostatic

regime. As it was mentioned before, in bistatic regime the corresponding mathemat-

ical model is based on the elliptical Radon transform. Although, S. Mensah and E.

Franceschini investigated the inversion of the elliptical Radon transform in [39, 40],

this case is still not completely understood. To the best of our knowledge no exact

inversion formula is known for the reconstruction from elliptical Radon transform in

the circular aperture. Instead, many authors resort to approximate inversion algo-

rithms, such as the recent publication [52] and the work done by T. Quinto and his

student H. Levinson to develop novel local reconstruction methods for bistatic radar

and ultrasound imaging [36].

In this chapter, we describe an approximate inversion of the elliptical Radon

transform when the source and the receiver (the foci of the integration ellipse) are

rotating around the origin at a fixed distance from each other, as illustrated in Fig-

ure 6.1. We demonstrate the efficiency of the suggested algorithm by presenting a

computational implementation of the method on a numerical phantom. We explain

how to generate a sample image, collect its integrals over a family of ellipses and then

derive a filtered backprojection (FBP) algorithm to reconstruct important features

(e.g. boundaries) of the original image.

48
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Figure 6.1. Circular acquisition geometry.

6.1 Reconstruction algorithm

Let C designate the circle centered at the origin (0, 0) and of radius R. We

consider the case of circular acquisition geometry where the source and the receiver

are rotating on the circle C. We also assume that the distance c between the source

and the receiver is constant (see Figure 6.1). We parameterize the source and the

receiver location by the angle ϕ, where ϕ ∈ [0, 2π) is the polar angle of the midpoint

(cx, cy) measured from the x-axis. For simplicity, we assume that the centers (cx, cy)

are rotating on the unit circle. The Figure 6.2 illustrates the circular acquisition

geometry and the center’s location at a rotation angle ϕ.

To generate the data, we create a sample image called a phantom. Then we

compute its integrals over family of ellipses with foci at the source and the receiver

locations. The collected integrals are the values of elliptical Radon transform Rf

that we use later in the FBP algorithm to reconstruct the features of the original

phantom. Now let us look at each of these steps in a little more detail.



50

(cx,cy)

X

Y

-1 1

-1

1

Ф

0

S

b R

Figure 6.2. Geometric setup of integration.

Figure 6.3. Phantom image.

6.1.1 Generation of the phantom image

Numerically, we consider the grid that specifies a pixelated representation of

[-1,1] × [-1,1]. The phantom images that we consider are represented by sums of

indicator functions of simple objects, like circles and squares. To determine whether

a particular pixel lies in the interior of a circle or a square, we look at the center

of the pixel. If the center of the pixel lies within a circle/square then we attribute

the intensity of the circle/square to the pixel’s value. If a pixel is not part of any
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Figure 6.4. Projection data.

circles/squares, its value is 1. In other words, the intensity values of all the pixels in

the unit circle define the function f(x, y) as follows:

f(x, y) =

 I the center of the pixel inside some of the circles/squares,

1 the center of the pixel outside all circles/squares.

where I is equal to the sum of the additive intensity values of all circles/squares that

the pixel is a part of.

6.1.2 Computation of the projection data

Once we create the phantom, we need to generate the projection data which is

the integrals of the phantom over family of ellipses. As defined in the introduction,

we specify the position of the integration ellipse E(b, ϕ) by the angle ϕ which is the

polar angle of the center of the ellipse (cx, cy) and the semi-minor axis b. Because in

practical applications the data is sampled at a finite set of points on the unit circle,

we discretize the problem by considering only a finite number of angles ϕ and a finite

number of samples of the semi-minor axis b. So we uniformly discretize the data
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Figure 6.5. Intersection points of an ellipse with the grid.

[0, 2]× [0, 2π] of b and ϕ to Nb and Nϕ points, respectively. At each point (bk,ϕj), we

compute the value of the elliptical Radon transform Rf(bk, ϕj):

Rf(bk, ϕj) := Rfk,j (k, j) ∈ {0, ..., Nb} × {0, ..., Nϕ}.

Our appraoch for approximating the integral of the intensity function along any given

ellipse E(bk, ϕj) is to measure the distance between the neighboring intersection points

of the ellipse with vertical and horizontal grid lines and then multiply it by the

intensity of the pixel where the points are located.

• Step 1

Using N × N grid that represents [-1,1] × [-1,1], we compute the intersections of a

given ellipse E(bk, ϕj) with all vertical and horizontal grid lines located in the unit

circle (Figure 6.5).

• Step 2

Then by applying the equation (6.1), we estimate the polar angle α between the

vector v (connecting the intersection point and (cx, cy)) and the unit vector î of the

x-axis (Figure 6.6).

α = ± arccos

(
v · î

∥v∥∥̂i∥

)
. (6.1)
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Figure 6.6. The vector v and the angle α.

A major advantage of computing the values of α for the forward problem is that

now one can sort the intersection points into the order in which they occur along the

ellipse clockwise starting at the west pole. Then, we can easily measure the distance

between any consecutive points (see Figure 6.6).

• Step 3

Once we measure the distance between any two intersection points, we multiply it

by the intensity of the pixel where the points are located. The obtained value is

the approximation of the integral of the intensity function along the arc joining these

points. This operation is repeated for each pair of intersection points and the resulting

values are summed to form an approximate integral of the phantom along the ellipse

E(bk, ϕj).

We repeat the same process for all the ellipses E(bk, ϕj) with (k, j) ∈ {0, ..., Nb}×

{0, ..., Nϕ}. The result is the discrete value of the elliptical Radon transform Rf that

we will use in the FBP algorithm to reconstruct the phantom.
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6.1.3 Reconstruction of the phantom image

In the following reconstruction approach, we simply use an approximate FBP

algorithm similar to the reconstruction algorithm for the classical Radon transform

described in chapter 4. The FBP algorithm involves two steps: (1) each of the

projections in the Radon transform is filtered then (2) backprojected to reconstruct

the original image.

• Step 1

Here we implement a similar procedure for the elliptical Radon transform using the

coordinates (b, ϕ) that are analogs of (ρ, ϕ) in the classical Radon transform. Let us

recall the filter F defined in the equation (4.9) and represented as follows:

Ff(w) =

∫ ∞

−∞
f̂(b) eibw |b| db. (6.2)

This equation represents a filtering operation that can be expressed as a composition

of two simpler operations: differentiation and the Hilbert transform. In fact, the

Fourier transform of the derivative of the function f is equal to the Fourier transform

of f multiplied by ib

∂̂tf(b) = (i b) ĝ(b).

So to use differentiation and account for the difference between b and |b|, we define

another operator called the Hilbert transform

Hf(x) =
1

π

∫ ∞

−∞

f(y)

x− y
dy.

This implies that

Ĥf(w) = (−i sgn(w)) f̂(w),
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where

sgn(w) =


1 if w > 0,

0 if w = 0,

−1 if w < 0.

By the above equation (6.2), the filtering operation consists of differentiating the func-

tion with respect to the semi-minor axis b and then applying the Hilbert transform.

• Step 2

The next main reconstruction step involves a process known as backprojection which

takes the data from the filtered projections and projects it back along the same ellipses

from where the data was collected. So to compute the function at any given point

(x, y) in the unit circle, we average the filtered data over all ellipses passing through

that point.

f(x, y) =

∫ 2π

0

F (b(ϕ), ϕ) dϕ,

This equation adds the resulting filtered projections F (b, ϕ) for different angles ϕ to

form the estimate of f(x, y). A common discrete approximation to the integral is

obtained by:

f(xn, yn) = △ϕ

Nϕ∑
m=0

F (b(ϕm), ϕm),

where △ϕ = 2π
Nϕ

. Nϕ is the number of angles ϕ for which the projections Rf(b, ϕ) are

known. It should be noted here that the value of b(ϕm) may not correspond exactly

to a value of m for the filtered projections that we calculated in the previous step. In

order to be able to compute f(xn, yn) one must then interpolate b(ϕm).

To implement the algorithm, we sampled the filter and discretized the backpro-

jection operation. The important steps of the approximate FBP are outlined below:
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1. Perform the FFT of the projection data for each angle ϕ.

2. Multiply the result with response function in the frequency domain.

3. Perform the IFFT of the result. This provides us the filtered projections in the

discrete domain at the various angles ϕ.

4. Sum the filtered projections. The result fFBP (x, y) is an approximation of

f(x, y).

6.2 Numerical results

In this section, we present some numerical results of our inversion algorithm

for different phantoms to demonstrate its performance. The data is collected from

detectors located on the unit circle. Therefore, the region of reconstruction is the

unit circle centered at the origin.

In a recent work [8], the authors studied microlocal properties of the ERT in

the circular acquisition geometry, and showed that the composition of the ERT with

its adjoint (the backprojection operator) is an elliptic pseudo-differential operator.

This means that the approximate inversion algorithm based on the backprojection

correctly reconstructs the singularities of the object and does not add any additional

singularities. Our numerical experiments below validate this result, and present an

effective implementation of the technique. Similar algorithms have been recently by

other authors, including [36], and [52].

In the results in Figure 6.7, the resolution is 64×64. The angles ϕ of the center

locations were uniformly discretized to Nϕ = 64 points between 0 and 2π. The semi-

minor axis of the integration ellipses were uniformly discretized to Nb = 64 points

between 0 and 2.
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(a) The original phantom
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Figure 6.7. Numerical results for 2 squares using N = 64.
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Figure 6.8. Numerical results for 2 squares using N = 128.

Next, we increase the number of discretization. We present new set of results

with resolution 128 × 128. As one might expect, we achieve a better reconstruction

when we decrease the sampling interval (see Figure 6.8). Additionally, the noisy

images in Figure 6.7 appear to be smoothed as compared to the Figure 6.8.

We tested the algorithm on a phantom containing 3 circles (Figure 6.10), the

parameters of which are given in Table 6.1. We enumerate the circles from 1 to 3

starting with the circle with highest center.
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(a) The orginal phantom
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Figure 6.9. Numerical results for a phantom with 2 circles.

Table 6.1. Parameters for the Fig. 6.10

Circle Coordinates of the center (x, y) radius intensity
1 (0.6,0.4) 0.2 2
2 (0.0,-0.1) 0.5 3
3 (-0.5,-0.5) 0.1 1

We tested the algorithm on a phantom containing 3 squares (Figure 6.11), the

parameters of which are given in Table 6.2. We enumerate the squares from 1 to 3

starting with the square with highest center.

Table 6.2. Parameters for the Fig. 6.11

Square Coordinates of the center (x, y) length intensity
1 (0.4,0.5) 0.2 1
2 (0.6,0.25) 0.3 2
3 (0.0,-0.1) 0.8 3
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(a) The original phantom

20 40 60 80 100 120

20

40

60

80

100

120

(b) The reconstructed phantom

20 40 60 80 100 120

20

40

60

80

100

120

Figure 6.10. Numerical results for a phantom with 3 circles.
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Figure 6.11. Numerical results for a phantom with 3 squares.



CHAPTER 7

DIRECTIONS FOR FURTHER WORK

The new mathematical results presented in this dissertation have the potential

to be generalized to higher dimensions using spherical harmonics and Gegenbauer

polynomials [1], similarly to the generalization of Cormack’s original inversion formula

(e.g. see [22, 41]). In addition, possible future work can be done to extend our

approach to other transforms of Radon type e.g. the elliptical Radon transform.

Another perspective for future work is to derive an accurate and efficient nu-

merical implementation of our new inversion formulas for both interior and exterior

problems when the Radon transform is known for only a part of all possible radii.

The algorithm described in chapter 6 used an approximate inversion formula to

reconstruct the image function from its integrals along ellipses rotating around the

origin. A direction for future work is to derive an exact inversion formula for the ellip-

tical Radon transform in 2D and 3D cases, and then implement it numerically. Also

the uniqueness problem for the elliptical Radon transform still remains unresolved in

the case of circular and spherical aperture. These open problems may be relevant to

several imaging modalities and practical applications working in the near field zone

or with bistatic measurements.
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CHAPTER 8

CONCLUSION

In the last decade, there has been a substantial spike of interest towards the

problem of reconstructing a function from its circular Radon transform mainly due

to its connection with some mathematical models of advanced imaging modalities. In

circular acquisition geometry there are various inversion formulas when the circular

Radon transform Rf is known for circles of all possible radii. However, to the best of

our knowledge no exact formula is known for the case when Rf is available for only a

part of all possible radii, or when the support of the function f is outside the circle.

In this dissertation, we presented our new results about the existence and

uniqueness of the representation of a function by its circular Radon transform with

radially partial data. A new inversion formula is described in the case of the cir-

cular acquisition geometry for both interior and exterior problems when the Radon

transform is known for only a part of all possible radii. We also investigated a recon-

struction algorithm applicable in the case of elliptical Radon transform based on an

approximate backprojection formula.

The results are not only interesting as original mathematical discoveries, but

can also open new frontiers in the field of imaging.
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Abstract
The representation of a function by its circular Radon transform (CRT) and
various related problems arise in many areas of mathematics, physics and
imaging science. There has been a substantial spike of interest toward these
problems in the last decade mainly due to the connection between the CRT and
mathematical models of several emerging medical imaging modalities. This
paper contains some new results about the existence and uniqueness of the
representation of a function by its CRT with partial data. A new inversion
formula is presented in the case of the circular acquisition geometry for both
interior and exterior problems when the Radon transform is known for only
a part of all possible radii. The results are not only interesting as original
mathematical discoveries, but can also be useful for applications, e.g., in
medical imaging.

1. Introduction

The circular Radon transform (CRT) g = Rf puts into correspondence to a given function f

its integrals along circles

g(x0, y0, r) = Rf (x0, y0, r) =
∫

C(x0,y0,r)

f (x, y) ds, (1)

where C(x0, y0, r) denotes the circle of radius r centered at the point (x0, y0).
If Rf (x0, y0, r) is known for all possible values of its three arguments, then the

reconstruction of a function f (x, y) of two variables from Rf is an overdetermined problem.
It is reasonable to expect that one can still uniquely recover f from Rf after reducing the
degrees of freedom of Rf by 1. There are many different ways to reduce the dimensions of
the data Rf , e.g., by considering only the data coming from circles of a certain fixed radius,
circles passing through a fixed point, circles tangent to a line, circles with centers located on
a curve, etc. All of these approaches lead to interesting mathematical problems, and various
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Figure 1. A sketch of TAT/PAT.

research groups have done extensive amount of work on this subject. One can find good
surveys and abundant lists of references to papers dedicated to these topics in [3, 4, 17, 18,
20].

In this paper we concentrate on the problem of recovering f from Rf data limited to
circles, which are centered on a circle C(R) ≡ C(0, 0, R). Our consideration is partially
motivated by several medical imaging applications briefly described below.

Thermoacoustic tomography (TAT) and photoacoustic tomography (PAT) are two
emerging medical imaging modalities, which are based on the same principles (see [21]
for a great survey on mathematical problems in TAT and PAT). The part of the human body
being imaged is exposed to a short pulse of electromagnetic (EM) radiation (radio-frequency
(RF) waves in TAT and lasers in PAT). A portion of this radiation is absorbed in the body,
heating up the tissue, and causing thermal expansion, which in turn generates acoustic waves
traveling through the body. Multiple transducers placed outside of the body record these
acoustic signals for some time. Then the collected data are processed to generate an image
of the heat absorption function inside the body. The premise here is that there exists a strong
contrast in the amount of absorbed EM energy between different types of tissues. For example,
cancerous cells absorb several times more energy than the healthy ones; hence, recovery of
the RF absorption function inside the body can help both to diagnose and to locate cancer.
At the same time sound waves have very weak contrast in the tissue; therefore, one can
simplify the model assuming the sound speed c to be constant in the body [36–38]. Under this
assumption the signals registered by a transducer at any moment of time t would be generated
by inclusions lying on a sphere of radius r = ct centered at the transducer location (see
figure 1). Thus, the problem of image reconstruction in TAT and PAT boils down to the
recovery of the image function f from Rf data along spheres centered at available transducer
locations. By using plane-focused transducers one can consider a 2D problem of inverting the
CRT to reconstruct planar slices of the image function. The transducer locations here (i.e. the
centers of integration circles) will be limited to a planar curve on the edge of the body. The
simplest such curve (i.e. the simplest data acquisition geometry) both for the mathematical
model and from the engineering point of view is a circle, and that is the geometry we consider
in this paper (see [18] for a survey on spherical Radon transforms with centers on a sphere).

Another medical imaging modality that uses the CRT in its mathematical model is the
ultrasound reflection tomography (e.g. see [29, 30]). Here, the transducer placed at the edge
of the body works in dual modes first as an emitter of sound waves and then as a receiver,
registering the reflection of ultrasound waves from the inclusions inside the body. Assuming a
constant speed of sound propagation, the problem of recovering the reflectivity function inside
the body corresponds to the problem of inverting the CRT with data collected along the circles

2
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of radius r = ct/2. Some other applications of this transform include sonar and radar imaging
(e.g. see [9, 25]).

2. Previous works and known results

The major problems studied in relation to Radon transforms include the existence and
uniqueness of their inversions, inversion formulae and algorithms, the stability of these
algorithms and the range descriptions of the transforms (e.g. see [14, 27, 28]). The first
three problems for the circular transform will be discussed throughout this paper. For the
detailed description and known results about range descriptions, we refer the reader to papers
[2, 5, 19].

The existence and uniqueness problem of the inversion of the CRT has been studied by
many authors for various restrictions of Rf and various classes of function f (see [1, 3, 4, 8,
13, 15, 17, 18, 29, 30] and the references therein).

In a classical work [3] Agranovsky and Quinto provided a complete solution to the
problem in the case when f has compact support and Rf is known along circles of all possible
radii centered on a given set.

Agranovsky et al in [1] used PDE techniques to study the injectivity problem of the
spherical Radon transform (n-dimensional generalization of the circular transform) when
f ∈ Lp(Rn) and Rf is known for spheres of all possible radii centered at every point of the
boundary of some domain D.

Finch et al in [17] studied this problem for smooth f supported in a bounded connected
domain D ⊂ R

n. For strictly convex D they proved the uniqueness of inversion using Rf

from spheres centered on any open subset of the boundary of D and all possible radii. In the
case of odd n they also showed uniqueness of inversion from data with spheres centered at
every point of the boundary and radii limited to r < diam(D)/2. The proof of the latter result
would not extend to even dimensions, since it was based on the solution properties of certain
problems related to wave equation, that hold only in odd dimensions.

Ambartsoumian and Kuchment in [4] obtained some further results on injectivity of the
spherical transform, providing several sufficient conditions on the data acquisition geometry,
in order for the transform to have a unique inverse. That paper also used Rf from spheres of
all possible radii.

Lavrentiev et al in [24] proved the injectivity of a Radon-type transform integrating along
a fairly general family of curves invariant with respect to rotations around the origin, when
only half of the possible ‘radii’ of these curves are used, and the function is supported inside
the circle. No inversion formulae were derived in that work.

Anastasio et al showed in [7] that in the 3D spherical acquisition geometry the Radon data
for half of all possible radii are sufficient for unique reconstruction of the unknown function
supported inside the sphere. It was mentioned that the technique can be applied to obtain
a similar result in 2D. The work did not provide an exact inversion formula, and it did not
address the uniqueness problem when the support of the unknown function extends outside of
the sphere.

In circular acquisition geometry there are various inversion formulae when Rf is known
for circles of all possible radii [16, 22, 23, 29]. However, to the best of our knowledge no
exact formula is known for the case when Rf is available for only half of all possible radii, or
when the support of f is outside the circle.

In this paper we derive inversion formulae of the CRT from Rf data collected along all
circles centered on the circle C(R) and of radii r < R1 � diam(D)/2. The result holds when
f is supported inside the annulus A(ε,R) = {(x, y) : ε <

√
x2 + y2 < R} for any ε > 0,

3
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Figure 2. Geometric setup of integration along the circle C(ρ, φ).

as well as when f is supported inside the annulus A(R, 3R). Some other cases, such as f

defined inside D(0, 2R) by the radial symmetry with respect to the circle C(R), follow as
simple corollaries.

3. Main results

3.1. Notations

Throughout this section, f (r, θ) denotes an unknown function supported inside the disk
D(0, 3R), where (r, θ) are the polar coordinates measured from the center of that disk, and
R > 0 is a fixed number. The CRT of f along a circle of radius ρ centered at a point with the
polar coordinates (R, φ) (see figure 2) is denoted by

g(ρ, φ) = Rf (ρ, φ) =
∫

C(ρ,φ)

f (r, θ) ds. (2)

The Fourier series generated by f (r, θ) and g(ρ, φ) with respect to corresponding angular
variables are denoted by

f (r, θ) =
∞∑

n=−∞
fn(r) einθ , (3)

g(ρ, φ) =
∞∑

n=−∞
gn(ρ) einφ, (4)

where the Fourier coefficients fn(r) and gn(ρ) are computed by

fn(r) = 1

2π

∫ 2π

0
f (r, θ) e−inθ dθ, (5)

4
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gn(ρ) = 1

2π

∫ 2π

0
g(ρ, φ) e−inφ dφ. (6)

3.2. Functions supported in an annulus A(ε,R)

In this subsection we consider a smooth function f (r, θ) supported inside the disk of radius
R. We show that the function can be uniquely recovered from Radon data with only part of all
possible radii, and then provide a reconstruction formula.

Theorem 1. Let f (r, θ) be an unknown continuous function supported inside the annulus
A(ε,R) = {(r, θ) : r ∈ (ε, R), θ ∈ [0, 2π ]}, where 0 < ε < R. If Rf (ρ, φ) is known for
φ ∈ [0, 2π ] and ρ ∈ [0, R − ε], then f (r, θ) can be uniquely recovered in A(ε,R).

Proof. We use an approach similar to Cormack’s inversion of the linear Radon transform
[11]. Let us rewrite formula (2) by considering the contribution dg to g(ρ, φ) from two
equal elements of arc ds of the circle C(ρ, φ). If the two elements of the arc are located
symmetrically with respect to the polar radius of the center of the integration circle (see
figure 2), then

dg =
∞∑

n=−∞
[fn(r) einθ + fn(r) ein(2φ−θ)] ds, 0 � φ � θ � 2π,

so we can write

g(ρ, φ) =
∫

C+(ρ,φ)

∞∑
n=−∞

[fn(r) einθ + fn(r) ein(2φ−θ)] ds, 0 � φ � θ � 2π,

where C+(ρ, φ) denotes half of the circle C(ρ, φ) corresponding to θ � φ.
Note that einθ + ein(2φ−θ) = 2 einφ cos[n(θ − φ)] and s = ρ arccos

(
ρ2+R2−r2

2ρR

)
, hence

ds = rdr

R

√
1 − (

ρ2+R2−r2

2ρR

)2
.

Exchanging the order of summation and integration and using these relations we get

g(ρ, φ) =
∞∑

n=−∞
2 einφ

∫ R

R−ρ

fn(r) r cos[n(θ − φ)]

R

√
1 − (

ρ2+R2−r2

2ρR

)2
dr.

Applying θ − φ = arccos
(

r2+R2−ρ2

2rR

)
, we obtain

g(ρ, φ) =
∞∑

n=−∞
2 einφ

∫ R

R−ρ

fn(r) r cos
[
n arccos

(
r2+R2−ρ2

2rR

)]
R

√
1 − (

ρ2+R2−r2

2ρR

)2
dr. (7)

Comparing equations (4) and (7) it is easy to note that by passing to the basis of complex
exponentials we diagonalized the CRT, i.e. the nth Fourier coefficient of g depends only on
the nth Fourier coefficient of f . This is not surprising, due to the rotation invariance property
of Rf in the circular geometry. As a result, our problem breaks down to the following set of
one-dimensional integral equations:

gn(ρ) = 2
∫ R

R−ρ

fn(r) r T|n|
(

r2+R2−ρ2

2rR

)
R

√
1 − (

ρ2+R2−r2

2ρR

)2
dr, (8)

where Tk(x) is the kth-order Chebyshev polynomial of the first kind.
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Let us make a change of variables in integral (8) by setting u = R − r . Then equation (8)
becomes

gn(ρ) =
∫ ρ

0

fn(R − u) 4ρ (R − u) T|n|
[

(R−u)2+R2−ρ2

2R (R−u)

]
√

ρ − u
√

(u + ρ)(2R + ρ − u)(2R − ρ − u)
du, (9)

which can be rewritten as

gn(ρ) =
∫ ρ

0

Fn(u)Kn(ρ, u)√
ρ − u

du, (10)

where

Fn(u) = fn(R − u), (11)

Kn(ρ, u) =
4ρ (R − u) T|n|

[
(R−u)2+R2−ρ2

2R(R−u)

]
√

(u + ρ)(2R + ρ − u)(2R − ρ − u)
. (12)

Equation (10) is a Volterra integral equation of the first kind with a weakly singular
kernel (e.g. see [32, 33]). Indeed, due to the assumptions on the support of f we know that
Fn(u) ≡ 0 for u close to R or 0. Therefore, from formula (12) and the properties of Chebyshev
polynomials, it follows that the kernel Kn(ρ, u) is continuous in its arguments (and hence
bounded) along with the first-order partial derivatives on the support of Fn.

To get rid of the singularity in the kernel of equation (10), we apply the standard method of
kernel transformation [34]. Multiplying both sides of equation (10) by 1√

t−ρ
dρ and integrating

from 0 to t, we get∫ t

0

gn(ρ)√
t − ρ

dρ =
∫ t

0

∫ ρ

0

Fn(u)Kn(ρ, u)√
ρ − u

√
t − ρ

du dρ, t > 0.

Changing the order of integration, we obtain∫ t

0

gn(ρ)√
t − ρ

dρ =
∫ t

0
Fn(u) Qn(t, u) du, (13)

where

Qn(t, u) =
∫ t

u

Kn(ρ, u)√
ρ − u

√
t − ρ

dρ.

The advantage of equation (13) in comparison to equation (10) is that the modified kernel
Qn(t, u) is finite. Indeed, making a change of variables ρ = u + (t − u) l, 0 � l � 1 in the
last integral, we get

Qn(t, u) =
∫ 1

0

Kn(u + (t − u) l, u)√
l
√

1 − l
dl. (14)

Since Kn is bounded (say |Kn| < M), we obtain

|Qn(t, u)| < M

∫ 1

0

dl√
l
√

1 − l
= Mπ.

In addition Qn(t, t) = πKn(t, t) = π

√
2t (R−t)

R
�= 0 on the support of Fn.

Now we can easily modify equation (13) to a Volterra equation of second kind.
Differentiating equation (13) with respect to t, we get

d

dt

∫ t

0

gn(ρ)√
t − ρ

dρ = πFn(t) Kn(t, t) +
∫ t

0
Fn(u)

[
∂

∂t

∫ t

u

Kn(ρ, u)√
ρ − u

√
t − ρ

dρ

]
du.
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Dividing both sides of the last equation by πKn(t, t) and denoting

Gn(t) = 1

πKn(t, t)

d

dt

∫ t

0

gn(ρ)√
t − ρ

dρ (15)

and

Ln(t, u) = 1

πKn(t, t)

∂

∂t

∫ t

u

Kn(ρ, u)√
ρ − u

√
t − ρ

dρ, (16)

we finally obtain a Volterra equation of second kind:

Gn(t) = Fn(t) +
∫ t

0
Fn(u)Ln(t, u) du, (17)

where the kernel Ln(t, u) is continuous on the support of Fn. To see the continuity of Ln, one
can make a change of variables in equation (16):

ρ = t cos2 β + u sin2 β, β ∈ [0, π/2],

and express Ln as

Ln(t, u) = 2

πKn(t, t)

∂

∂t

∫ π/2

0
Kn(t cos2 β + u sin2 β, u) dβ.

The Volterra equation of the second kind (17) has a unique solution, which finishes the proof
of the theorem. �

Using Picard’s process of successive approximations (e.g. see [33]) for the solution of the
Volterra equations of the second kind, one can immediately obtain the following.

Corollary 2. An exact solution of equation (17) is given by the formula

Fn(t) = Gn(t) +
∫ t

0
Hn(t, u)Gn(u) du, (18)

where the resolvent kernel Hn(t, u) is given by the series of iterated kernels

Hn(t, u) =
∞∑
i=1

(−1)iLn,i(t, u), (19)

defined by

Ln,1(t, u) = Ln(t, u) (20)

and

Ln,i(t, u) =
∫ t

u

Ln,1(t, x) Ln,i−1(x, u) dx, ∀ i � 2. (21)

This corollary (with notations defined in formulas (11), (12), (15) and (16)) provides a
new exact formula for the inversion of the CRT in circular acquisition geometry. Its advantage
compared to all the other known exact inversion formulae is the fact that only part of the Rf

data are used. Namely, it is easy to note the following.

Remark 3. In order to reconstruct the function f (r, θ) in any subset 	 of the disk of its
support D(0, R), the inversion formula in corollary 2 requires the knowledge of Rf (ρ, φ),

only for ρ < R − R0, where R0 = inf{|x|, x ∈ 	}.
In medical imaging, reducing the radial data redundancy can be essential for increasing

the depth and reducing the time of imaging.
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Remark 4. The resolvent kernel Hn(t, u) is the same for any functions f and g. Hence, in
practice, one needs to compute it with the desired accuracy only once, and then it can be used
with any data set.

Remark 5. In theorem 1 we require f to be continuous, which guarantees the convergence
of the Fourier series (3) and (4) almost everywhere. If one needs to ensure convergence
everywhere, then some additional conditions on f (e.g. bounded variation) should be added
in theorem 1 and the other two theorems in this paper.

3.3. Functions supported inside an annulus A(R, 3R)

Let us now consider an exterior problem in the circular acquisition geometry, i.e. the Radon
data are still collected along circles centered on a circle of radius R; however, the unknown
function f is supported outside of the disk D(0, R).

Theorem 6. Let f (r, θ) be an unknown continuous function supported inside the annulus
A(R, 3R) = {(r, θ) : r ∈ (R, 3R), θ ∈ [0, 2π ]}. If Rf (ρ, φ) is known for φ ∈ [0, 2π ] and
ρ ∈ [0, R1], where 0 < R1 < 2R, then f (r, θ) can be uniquely recovered in A(R, R1).

Proof. The argument of the proof of the previous theorem repeats here with very small
changes. The condition 0 < R1 < 2R guarantees that all integration circles C(ρ, φ) intersect
the boundary of the disk D(0, R). Hence equation (7) in this case becomes

g(ρ, φ) =
∞∑

n=−∞
2 einφ

∫ R+ρ

R

fn(r) r cos
[
n arccos

(
r2+R2−ρ2

2rR

)]
R

√
1 − (

ρ2+R2−r2

2ρR

)2
dr. (22)

Then in a similar way, we have

gn(ρ) = 2
∫ R+ρ

R

fn(r)rT|n|
(

r2+R2−ρ2

2rR

)
R

√
1 − (

ρ2+R2−r2

2ρR

)2
dr. (23)

Now making a change of variables u = r − R in the last expression, we get

gn(ρ) =
∫ ρ

0

fn(R + u) 4ρ (R + u)T|n|
[

(R+u)2+R2−ρ2

2R (R+u)

]
√

ρ − u
√

(u + ρ)(2R + u + ρ)(2R + u − ρ)
du, (24)

which can be rewritten as

gn(ρ) =
∫ ρ

0

Fn(u)Kn(ρ, u)√
ρ − u

du, (25)

where

Fn(u) = fn(R + u), (26)

Kn(ρ, u) =
4ρ (R + u)T|n|

[
(R+u)2+R2−ρ2

2R (R+u)

]
√

(u + ρ)(2R + u + ρ)(2R + u − ρ)
. (27)

Note that if one would allow ρ > 2R, then Kn(ρ, u) would become unbounded due to the
last multiplier in the denominator. This shows that 3R is an accurate upper limit for the outer
radius of the annulus in the hypothesis of the theorem.

In analogy with the proof of the previous theorem we get

Kn(t, t) =
√

2t (R + t)

R
�= 0.

All the other steps literally repeat the proof of theorem 1. �
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3.4. Functions supported inside the disk D(0, 2R)

It is easy to note that in some special cases one can combine the results of the previous two
theorems to reconstruct a function whose support is located both inside and outside of the
circular path C(R) of data acquisition. For example,

Theorem 7. Let f be an unknown continuous function supported inside the disk D(0, 2R).
Assume also that f ≡ 0 in some neighborhood of the circle C(R), and all its Fourier
coefficients are even (or odd) with respect to C(R), i.e. fn(R + u) = fn(R − u) (or
fn(R + u) = −fn(R − u)) for ∀u ∈ [0, R]. If Rf (ρ, φ) is known for φ ∈ [0, 2π ] and
ρ ∈ [0, R1], where 0 < R1 < R, then f (r, θ) can be uniquely recovered in A(R−R1, R+R1).

Proof. Combining the two previous results, we obtain a Volterra integral equation of the first
kind

gn(ρ) =
∫ ρ

0

Fn(u)Kn(ρ, u)√
ρ − u

du, (28)

where

Fn(u) = fn(R + u) (29)

and

Kn(ρ, u) = 4ρ√
u + ρ

⎧⎨
⎩

(R + u)T|n|
[

(R+u)2+R2−ρ2

2R(R+u)

]
√

(2R + u + ρ)(2R + u − ρ)
±

(R − u)T|n|
[

(R−u)2+R2−ρ2

2R(R−u)

]
√

(2R + ρ − u)(2R − ρ − u)

⎫⎬
⎭ .

(30)

The rest of the proof is carried out along the same lines as before. �

It is interesting to note that the CRT in the linear acquisition geometry can be uniquely
inverted on the class of continuous functions that are even with respect to the linear path of
the data acquisition. At the same time all odd functions are mapped to zero by that transform.
In our case (of circular acquisition geometry), the CRT can be uniquely inverted on classes
of functions with Fourier coefficients that are even with respect to the circular path of data
acquisition, as well as with the ones that are odd.

4. Additional remarks

(i) While it is well established that acoustic breast tomography in its various forms is a classic
example of spherical Radon-based imaging inside a spherical/circular (3D/2D) aperture,
the case of imaging outside a spherical aperture is a less well-described biomedical
concept. Two biomedical imaging methods can currently be modeled in the time domain
through spherical transforms of a function exterior to the aperture: transrectal ultrasound
(TRUS) [31] and intravascular ultrasound (IVUS) (see section 8.10 in [10] and the
references therein). In both TRUS and IVUS, an ultrasound array arranged on the surface
of a cylinder is introduced into the body with the goal of producing a transverse or axial
image. In TRUS, the typical application is imaging of the male prostate, while IVUS is a
higher resolution ultrasound technique typically used to evaluate plaques in blood vessels.

A setup where the support of the unknown function is located on both sides of the data
acquisition path may not be relevant to medical imaging; however, it can be applicable in
radar and sonar imaging [9, 25].
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(ii) The reconstruction of f from partial Rf data is an extremely ill-conditioned problem
and, despite all uniqueness results, in practical implementation one can expect to recover
stably only certain parts of the image, the rest of it being blurred out (e.g. [6, 38]). This
is due to the fact that some parts of the wavefront set WF(f ) of the image will be lost
[25, 39]. More specifically, a point (x, ξ) ∈ WF(f ) can be stably detected from the
Radon data, if and only if Rf includes data obtained from a circle passing through x and
co-normal to ξ . In other words, one can see only those parts of image singularities that
can be tangentially touched by available circles of integration.

It is easy to notice that in the case of the interior problem with the available radii ρ < R

all singularities can be stably resolved. In the exterior problem only singularities in the
directions close to normals of polar radius can be recovered with little or no blurring.
However, this may be enough for example in IVUS, where the imaging is done along the
vein walls, which are normal to the polar radii directions.

(iii) The main results of the paper have potential to be generalized to higher dimensions using
spherical harmonics and Gegenbauer polynomials akin to the generalization of Cormack’s
original inversion [11] to higher dimensions (e.g. see [26] and [12]). The authors plan to
address this issue in future work.

(iv) An accurate and efficient numerical implementation of the inversion formulae derived in
the paper is an interesting problem in its own right. This includes, among other things,
a careful study of conditions ensuring that the resolvent kernels (19) are bounded. The
authors plan to address this problem in future work.
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